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Background

An environment on Zd is an assignment of transition probability vectors to each site x ∈ Zd.
Formally, it may be defined as a function ω : Zd ×Zd → [0, 1] with

∑
y∈Zd ω(x, y) = 1 for all

x. For a given environment ω and x ∈ Zd, we can define P x
ω to be the law of a discrete-time

Markov chain (Xn)n≥0 on Z, started at x, with transition probability from y to z given
by ω(y, z). RWRE are random walks that occur in an environment that is itself randomly
chosen. The environment-dependent measure P x

ω is known as the quenched law of a random
walk starting at x. For a probability measure P on the space of possible environments and
a site x ∈ Zd, we may define an annealed law Px by Px(·) = EP [P x

ω (·)]. The probability of
an event under Px is the probability of the event if you know the walk starts at x but don’t
yet know what the environment looks like. A typical assumption is that under the measure
P , transition probability vectors (ω(x, x + y))y∈Zd at different sites x are independent and
identically distributed (iid). In RWRE on Z, the walk may be recurrent (meaning the walk
returns to the origin infinitely many times with probability 1) or transient in one direction
(meaning the limit of the walk is ∞ or −∞). In the latter case, there is a P0–almost sure
limiting speed v ≥ 0. A surprising feature of RWRE is that v = 0 is possible even if
directional transience holds. We say the walk is ballistic if v > 0.

Solomon [14] studied nearest-neighbor RWRE on Z in 1975, characterizing directional
transience and calculating limiting speed in terms of simple, easily computable expectations
involving the environment at a single site. One of his main results is the possibility that
a walk is directionally transient but not ballistic. Kesten, Koslov, and Spitzer [7] then
characterize Gaussian and non-Gaussian limit laws using a parameter κ, which they defined;
they showed Gaussian limiting behavior for κ ≥ 2 and non-Gaussian for κ < 2.

RWRE have proven quite challenging to analyze in settings other than the nearest-
neighbor case of Z. In the setting of RWRE on Z with bounded jumps (as opposed to
nearest-neighbor jumps), directional transience and ballisticity have been characterized, but
not in terms of parameters that can be directly computed. Nearest-neighbor RWRE on Zd

have also proven difficult to analyze, and although some sufficient conditions for directional
transience and ballisticity have been studied, no general characterizations are known. In the
setting of Zd, even a 0-1 law for directional transience under the iid assumption has yet to
be proven. That is, if ` ∈ Rd \ {0} and A` is the event that limn→∞Xn · ` = ∞, it is still
an open problem to show that P0(A`) ∈ {0, 1} for d ≥ 3. The case d = 2 was handled by
Zerner and Merkl in [17].
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Nevertheless, special cases of RWRE on Zd have allowed for more to be proven. One such
special case is random walks in Dirichlet environments (RWDE), where the transition prob-
abilities vectors are assumed to be drawn from a Dirichlet distribution. Many conjectures
that remain open for general nearest-neighbor RWRE on Zd have been proven for RWDE.
Not only has a 0-1 law been proven for all dimensions, but in the nearest-neighbor case,
Sabot, Bouchet, and Tournier were able to characterize directional transience in terms of
the Dirichlet weights assigned to the 2d different directions (see [11],[2],[15]). Moreover, if
d ≥ 3, all walks are known to be transient, even if they are not directionally transient. For
d ≥ 3, ballisticity has a simple characterization in terms of a parameter κ0, which governs
the strength of finite traps where the walk can get stuck (the walk is ballistic precisely when
κ0 > 1). This is a very different characterization from what is known for nearest-neighbor
RWDE on Z, where ballisticity is governed by the κ of [7]. This κ is always strictly smaller
than κ0 and reflects the existence of arbitrarily large intervals that are difficult to cross.

Past accomplishments

Ballisticity of RWDE on Z with bounded jumps [13]
Because Dirichlet environments had proven to be a fruitful model for Zd, I chose to study
the question of ballisticity for RWDE on Z with bounded jumps. Let L,R ≥ 1 be integers,
and consider a vector of “Dirichlet weights” (αi)

R
i=−L, with each αi ≥ 0. In my model,

transition probabilities from site x to sites x−L, . . . , x+R are drawn according to a Dirichlet
distribution with respective weights α−L, . . . , αR, and this is done independently for each x.

I was able to define a parameter κ1—a weighted sum of Dirichlet parameters—that is
equivalent to the κ of [7] in dimension 1, but in the case of bounded jumps is no longer
always greater than κ0. It turns out that in order to achieve ballisticity, both κ0 and |κ1|
must be greater than 1. When κ0 ≤ 1, the walk has zero speed because of the relatively high
likelihood of getting stuck in a region of bounded size for a long time. When |κ1| ≤ 1, the
walk has zero speed because of the relatively high likelihood of repeatedly backtracking over
regions of all sizes. These two types of slowing operate independently, and both parameters
are necessary to look at, because the ordered pair (κ0, |κ1|) can take on any value in the first
quadrant of R2.

This is the first characterization of ballisticity for a class of RWRE on Z with bounded
jumps in terms of parameters that can be directly computed.

As a step toward characterizing ballisticity for the Dirichlet model, I was able to give
two abstract characterizations for general RWRE with bounded jumps on Z. The first is
that the walk is ballistic if and only if the expected time to reach the right of the origin
is finite, and the second is that the walk is ballistic if and only if the expected number of
total visits to the origin is finite. Similar characterizations have been given before, but under
“ellipticity” assumptions not satisfied by the Dirichlet model (these assumptions have to do
with certain transition probabilities or their ratios being almost surely bounded away from
0). After strengthening these abstract criteria to fit my model, I used tools that had been
developed for the study of RWDE on Zd, together with coupling arguments and comparisons
of several different modified measures on environments, to give my characterization in terms
of κ0 and κ1. In fact, I was able to do more, fully characterizing the finiteness of moments
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under P (the measure on environments) for the expected time under the quenched measure
P 0
ω that the walk spends at the origin. Namely, if N0 is the total number of visits to the

origin, I showed that EP [E0
ω[N0]

s] < ∞ if and only if s < min(κ0, |κ1|). Setting s = 1 and
applying my second abstract characterization then yields my main result.

Directional Transience of RWRE and RWDE on Z2 with bounded jumps [12]
The proofs of the 0-1 law for directional transience of RWRE on Z2 given in [17] and [16]

rely on a nearest-neighbor assumption. I modified the proofs to remove that assumption,
proving the 0-1 law for iid RWRE on Z2 with bounded jumps. This work was motivated by
a desire to extend to the bounded-jump case the characterization of directional transience
for nearest-neighbor RWDE on Zd [10]. The proof of the 0-1 law for RWDE on Zd, d ≥ 3,
already worked for bounded jumps [2], [15], as did a proof that the walk is transient with
positive probability in every direction ` with ` ·E0[X1] > 0 [15]. In addition to extending the
0-1 law for d = 2, I showed that for RWDE on Zd where the annealed drift E0[X1] is zero,
the projection of the walk onto any given direction is almost surely recurrent. Together,
my two results were all that was needed to fully extend the characterization of directional
transience for RWDE on Zd from the nearest-neighbor case to the bounded-jump case.

Symbolic dynamics
I began my research in symbolic dynamics in the summer of 2015 at Hillsdale College

under the supervision of Will Abram. I studied algebraic properties of n-ary interleaving
operations on sets X ⊆ AN of symbol sequences with symbols drawn from a finite alphabet
A. One particular type of subset of AN is called a path set, and the class of path sets is closed
under the interleaving operations I studied. The primary area of investigation for me was
factorization: is it possible to say when a given path set can be obtained from interleaving
some number of other path sets? In 2018, Jeffrey Lagarias, who had worked with Abram
on previous papers related to path sets and interleaving, began working with me and with
Abram to improve our results and exposition with the goal of publishing a paper. We ended
up expanding the project and splitting our results into two papers, one of which ([1]) studies
properties of interleaving operations on general subsets X ⊆ AN, and one of which focuses
on the special case of path sets. A main question for this work has to do with the structure
of what we called interleaving closure sets: if, for a given X ⊆ AN, N (X) is the set of n such
that X can be factored as an n-fold interleaving of sets X0, . . . , Xn−1, which sets N ⊆ N+

have the property that there exists an X ⊆ AN with N (X) = N? Another question has to
do with iterated factorization. If a set X breaks down as the interleaving of some other sets
Xi, and each of these breaks down as the interleaving of further sets Xi,j, and so on, is this
iterated factorization process guaranteed to terminate? We were able to successfully answer
these question, as well as others.

Future Work

Limiting distributions of RWDE with bounded jumps on Z
One natural extension of the work I have done is to study limit theorems. Central limit
theorems (CLTs) and stable limit laws have already been proven in [8], [6], and [5], but
under uniform ellipticity assumptions not available in the Dirichlet case.

Proving central limit theorems (CLTs) requires characterizing, among other things, when

3



certain quantities have finite second moments; in this case, these quantities will have to do
with the amount of time it takes the walk to reach the right of the origin. Because one of my
abstract characterizations of ballisticity is in terms of finite expected time to reach the right
of the origin, and because the other involves moments that I have good control of, I hope to
relate the two in a way that gives me a characterization of the finite second moments that I
need; this will likely occur when min(κ0, |κ1|) > 2. My hope is to then use methods similar
to those of [8] and [6] to get CLTs, getting around their uniform ellipticity assumption by
means of quantities that I am able to explicitly control in the Dirichlet case. After this, I
can investigate the existence of limiting stable distributions in the cases where a CLT does
not hold, potentially by modifying methods from [5].

Like my results on ballisticity, these results would be significant because the limiting dis-
tributions would be characterized in terms of quantities that one can often directly compute
(κ0 and κ1), rather than limits involving norms of increasingly long products of matrices.

Computing κ0
The parameter κ0, which controls finite traps, is the minimal Dirichlet weight exiting a

finite, strongly connected set of vertices. In the nearest-neighbor case of Zd, this minimum is
always attained as the weight exiting a pair of adjacent vertices, and so κ0 has a formula as a
minimum of d different sums, each sum giving the Dirichlet weight exiting a pair of vertices
adjacent in a particular dimension. In the bounded-jump case, the strongly connected sets
with minimal exit weight are less restricted. I showed that given the set of i ∈ {−L, . . . , R}
for which αi > 0 (which is the set of i for which the walk may jump from x to x+ i), there
exists a formula for κ0 as a minimum of finitely many sums of integer multiples of the αi.
However, I do not have a general way to find this formula, although I was able to find it in
several specific instances. I was able to give an algorithm to compute κ0 given L, R, and the
actual values of the αi, but my algorithm requires examining all subsets of a set of vertices
that grows as the αi change. If L = R = 5 and the weights αi range from 0.1 to 2, my
algorithm could require examining more than 21500 sets of vertices. I would like to work on
obtaining an efficient general algorithm to find the formula for κ0 as an elementary function
of the αi, given only the set of i for which αi > 0. Although this study is motivated by
probability, it involves more combinatorics and number theory than probability. Because I
have been able to find this formula using ad hoc arguments in all the instances I’ve looked at,
I am hopeful that I can find a way to turn the methods I’ve used into a general algorithm.
A longer-term goal would be to find a similar algorithm for computing κ0 for RWDE with
bounded jumps in higher dimensions.

The significance of this work would be to enable easy computation of κ0, and thus
min(κ0, |κ1|) (since κ1 is easy to compute)—a quantity which already is known to char-
acterize ballisticity, and, as discussed above, may well be found to control limit theorems as
well. This would mean the existence of a whole class of RWRE on Z (and potentially on
Zd) with bounded jumps where one can easily and explicitly check ballisticity, and possibly
limit laws.

Recurrence of balanced RWDE in Z2

For RWDE on Z2, if the annealed drift is nonzero, then the walk is transient in the
direction of the expected first step. If the parameters are balanced, the walk is directionally
transient with probability 0 in every direction.

In the latter case, the question remains open whether the walk is recurrent or transient;
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that is, will it return to the origin infinitely many times or finitely many times? For d = 1, a
walk with balanced parameters is recurrent [14], and for d ≥ 3, such a walk is transient [9].
Because simple symmetric random walks on Zd are recurrent for d = 1, 2 and transient for
d ≥ 3, it is conjectured that RWDE on Z2 with balanced parameters are in fact recurrent. I
have spent some time attempting to prove this conjecture, and made progress using methods
related to those in [9], where transience in the case d ≥ 3 was proven. Currently, I have
two steps missing. Roughly, I need to show that increasing Dirichlet weights along some
path from one site x to another site y by a fixed positive amount increases the annealed
probability that a walk started at x will reach y before returning to x. I can already prove it
in the case where the increase is by an integer amount, but I need it to hold for arbitrarily
small positive increases. The second thing I need to do is basically bound from below the
probability that a walk started from a vertex connected to the edge of a box of radius N
returns to this vertex Nf(N) times before making its way to the center, for some increasing
function f .

Ballisticity for general RWRE on Z with bounded jumps
In [13], I was able to show that for RWRE on Z with bounded jumps, the phenomena

of finite trapping and large backtracking govern ballisticity. Either phenomenon on its own
may be enough to cause zero speed (by having κ0 ≤ 1 or κ1 ≤ 1 ), but if neither is on its own
enough to cause zero speed, then the walk is ballistic. An interesting question I posed in that
paper is whether this is true for general RWRE on Z with bounded jumps. The phenomena
of finite trapping and large backtracking can easily be defined in the general case, and it is
interesting to ask whether it is true in general that the two kinds of slowing always operate
independently, as they do for the Dirichlet case, or if it is possible for them to “conspire
together” to cause zero speed, even if neither is strong enough to do so on its own. Prior to
[13], conditions for ballisticity of RWRE on Z with bounded jumps (or RWRE on a strip,
a generalization of the model) have required strong ellipticity assumptions that preclude
finite trapping altogether (e.g., [3], [8]). Hence the relationship between the two forms of
slowing when both are possible has not been studied. Therefore, an answer to this question
would significantly deepen our understanding of ballisticity and of transient-but-not-ballistic
behavior for RWRE on Z.

Transience in a neighborhood vs. one direction only
Let ` ∈ Sd−1 be a “direction” in the unit sphere in Rd, d ≥ 2. One can construct determinis-
tic walks that are transient in direction ` (i.e., Xn · ` approaches infinity) but recurrent in a
direction `′ in every neighborhood of ` (i.e., Xn · `′ comes arbitrarily near 0 infinitely often).

If A0
` is the event that this behavior occurs, an interesting problem is to rule it out as an

event of positive probability. Results on directional transience often rely on an assumption
a positive probability of transience in all directions in a given neighborhood, rather than
merely assuming positive probability of transience in a one direction (e.g., [4]). Proving that
the probability of A0

` is 0 for all directions ` would eliminate the need for this restriction.
Moreover, as I pointed out in [12], proving the slightly stronger statement that the probability
of an ` existing for which A0

` occurs is 0 would allow for a more complete understanding of
directional transience in, e.g, the Dirichlet case, where the probability of transience in a
given direction has already been characterized, but when this probability is zero for every
direction, the possibility of transience in a random direction has yet to be explored.
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