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ABSTRACT

This thesis studies non-nearest-neighbor random walks in random environments (RWRE)

on Z and Zd that are drawn in an i.i.d. way according to a Dirichlet distribution. We

complete a characterization of recurrence and transience in a given direction for random

walks in Dirichlet environments (RWDE) by proving directional recurrence in the case where

the Dirichlet parameters are balanced and the annealed drift is zero. As a step toward this,

we prove a 0-1 law for directional transience of i.i.d. RWRE on Z2 with bounded jumps. Such

a 0-1 law was proven by Zerner and Merkl for nearest-neighbor RWRE in 2001, and Zerner

gave a simpler proof in 2007. We modify the latter argument to allow for bounded jumps. We

then characterize ballisticity, or nonzero limiting velocity, of transient RWDE on Z. It turns

out ballisticity is controlled by two parameters, κ0 and κ1. The parameter κ0, which controls

finite traps, is known to characterize ballisticity for nearest-neighbor RWDE on Zd, d ≥ 3,

where transient walks are ballistic if and only if κ0 > 1. The parameter κ1, which controls

large-scale backtracking, is known to characterize ballisticity for nearest-neighbor RWDE on

Z, where transient walks are ballistic if and only if |κ1| > 1. We show that in our model,

transient walks are ballistic if and only if min(κ0, |κ1|) > 1. Our characterization is thus

a mixture of known characterizations of ballisticity for nearest-neighbor one-dimensional

and higher-dimensional cases. We also prove more detailed theorems that help us better

understand the phenomena affecting ballisticity.
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1. INTRODUCTION

This thesis studies non-nearest-neighbor random walks in random environments (RWRE) on

Z and Zd. We allow jumps of bounded size, and assume transition probability vectors at

various sites are drawn in an i.i.d. way. Most of our results deal random walks in Dirichlet

environments (RWDE), where the transition probability vectors are drawn according to a

Dirichlet distribution. Our main results concern directional recurrence and transience and

limiting velocity.

1.1 Background

RWRE were first treated in depth by F. Solomon [  1 ] in 1975, and the study has since

grown in many directions. Solomon focused on nearest-neighbor RWRE on Z, characterizing

directional transience and calculating limiting speed (under mild conditions) in terms of

simple, easily computable expectations involving the environment at a single site. One of

the main results from Solomon’s paper is that a RWRE can approach infinity almost surely,

but with an almost-sure limiting speed of zero, a surprising phenomenon that cannot occur

for random walks in homogenous or even periodic environments. A random walk is called

directionally transient if it has an almost-sure limiting direction. Under appropriate i.i.d.

assumptions on the environment, all directionally transient nearest-neighbor RWRE on Zd

have an almost-sure limiting velocity v (which can be 0). This is also true of RWRE with

bounded jumps on Z; see Appendix  A . We say a directionally transient random walk is

ballistic if the limiting velocity v is nonzero.

RWRE have proven quite challenging to analyze in settings other than the nearest-

neighbor case of Z. For instance, although some sufficient conditions for directional tran-

sience and ballisticity have been studied for nearest-neighbor RWRE on Zd, no general

characterizations are known, and known sufficient conditions are often quite difficult or im-

possible to check in general (see, for example, [  2 ]). Nevertheless, certain special cases have

proven to be more tractable. Examples include random environments that almost surely

have zero drift at every site (e.g., [  3 ], [  4 ], [  5 ]), random environments that are small perturba-

tions of simple random walks (e.g., [  6 ], [  7 ], [  8 ], [  9 ], [  10 ]), and environments where transition

10



probabilities are deterministic in some directions and random in others (e.g., [  11 ]). The

case of RWDE is another notable example. Many conjectures that remain open for general

nearest-neighbor RWRE on Zd have been proven for RWDE, including a characterization of

directional transience for all d and a characterization of ballisticity for d ≥ 3.

Dirichlet environments present a helpful case study for general RWRE, giving insight

into what sorts of behaviors are possible. For example, a noted conjecture (see [  12 ]) asserts

that under an assumption of uniform ellipticity (where transition probabilities are bounded

uniformly from below), nearest-neighbor RWRE on Zd, d ≥ 2, that are directionally tran-

sient are necessarily ballistic. Certain RWDE provide a counterexample for the non–uniform

elliptic case [  13 ], showing that the uniform ellipticity assumption is necessary for this con-

jecture. At the same time, in the Dirichlet case, the factors that can cause ballisticity to fail

are entirely due to the non–uniform ellipticity property, providing some additional evidence

for the conjecture (see [ 14 ], [ 15 , Remark 5.13]).

In some sense, the setting of RWRE on Z with bounded jumps—and of RWRE on a strip,

a generalization of the bounded-jump model—can be said to lie between the nearest-neighbor

settings of Z and Zd. Globally, these models are still able to exhibit one-dimensional behavior,

but locally, they behave more like random walks on a general graph. In these settings,

directional transience and ballisticity have been given various characterizations, most in

terms of Lyapunov exponents of infinite products of random matrices (see, for example,

[ 16 ],[ 17 ],[ 18 ],[ 19 ], [ 20 ]). These exponents cannot in general be computed exactly, although

some of them can be well approximated. Moreover, the characterizations of ballisticity have

relied on various strong ellipticity assumptions, which preclude the Dirichlet model.

Although RWDE have proven to be a fruitful model for nearest-neighbor RWRE on Zd,

we know of only one paper directly studying RWDE on Z with bounded jumps or on strips.

That paper [ 21 ] was the first to treat RWDE in any setting. It uses a connection between

RWDE and directed edge reinforced random walks to provide a characterization of directional

transience for the latter in the mold of [  16 ]. That paper preceded the development of helpful

tools that have since been applied to the analysis of nearest-neighbor RWDE on Zd.

Since then, some of the results on higher-dimensional RWDE obtained by Sabot, Tournier,

and Bouchet have not used a nearest-neighbor assumption, and therefore apply to all i.i.d.

11



RWDE with bounded jumps, including those on Z. For example, it is shown in [  22 ] that for

RWDE where the annealed expectation of the first step is nonzero, the walk is almost-surely

transient in the direction of that expectation. A remark in that paper points out that the

proof does not use a nearest-neighbor assumption, and therefore the result applies to all

RWDE with bounded jumps.

However, significant gaps remain between what is known for nearest-neighbor RWDE and

RWDE with bounded jumps. In two dimensions, even a 0-1 law for directional transience

(which has been proven for all nearest-neighbor RWRE on Z2 [ 23 ], on all bounded-jump

RWDE on Zd, d ≥ 3 [ 14 ], and on all bounded-jump RWRE on Z [ 16 ]) has not been proven

for RWDE with bounded jumps. A comprehensive study of ballisticity of RWDE has only

been done for dimensions 3 and higher [ 13 ], so in one dimension with bounded jumps,

nothing about ballisticity, limiting distributions, large deviations, etc. has been shown for

the Dirichlet regime beyond what is known for general RWRE on Z with bounded jumps

(and in fact many of the results proven for RWRE on Z with bounded jumps require some

version of a uniform ellipticity assumption that excludes Dirichlet environments).

1.2 Thesis structure

This thesis fills the aforementioned gaps as regards directional transience and ballisticity.

It therefore has three primary goals:

1. To prove a 0-1 law for directional transience on Z2 with bounded jumps (which we do

for general i.i.d. environments, not just Dirichlet environments);

2. To complete a characterization of directional transience in a given direction for RWDE

with bounded jumps on Zd by demonstrating recurrence in the case where the annealed

expectation of the first step is zero; and

3. To characterize ballisticity for all RWDE on Z in terms of the Dirichlet parameters.

The rest of this chapter formally introduces the model and notation. Chapter  2 states

our main results. Chapter  3 accomplishes the first two of the above goals, and Chapter  4 

accomplishes the third. Chapter  4 also provides criteria for ballisticity that apply to all i.i.d.

12



RWRE with bounded jumps on Z, not just Dirichlet ones, and proves some additional results

that allow us to better understand the various phenomena affecting ballisticity. Chapter  5 

continues this deeper exploration of the phenomena affecting ballisticity by proving some

results about accelerated, continuous-time RWDE, in the mode of [  14 ]. Chapter  6 gathers

open questions presented throughout the thesis and poses an additional one. This thesis is

based on two papers which the author has submitted for publication and posted to the arxiv.

Most of Chapter  3 is based on [ 24 ], and most of Chapter  4 is based on [ 25 ]. Chapter  5 is

based on material that was written for inclusion in [ 25 ] but was ultimately omitted for the

sake of space.

1.3 Model and notation

We formally describe our model. Because there are many definitions and symbols intro-

duced throughout this paper, and introduced at various points, we provide Appendix  C to

help the reader keep track of notation that is introduced here and elsewhere in the paper.

1.3.1 Random walks in random environments

Let V be a finite or countable set, and let ΩV = ∏
x∈V M1(V ), where M1(V ) is the set of

probability measures on V , endowed with the topology of weak convergence. An environment

on V is an element ω ∈ ΩV , which can be thought of as a function from V × V to [0, 1], with∑
y∈V ω(x, y) = 1 for all x. In the case where V = Zd, for each x ∈ Zd we let ωx ∈ M1(Zd)

be the probability measure on Zd given by ωx(y) = ω(x, x + y). Thus, ω = (ωx)x∈Zd is the

generic element of ΩZd . For a given environment ω and x ∈ V , we can define P x
ω to be the

measure on V N0 (with the natural sigma field) giving the law of a Markov chain (Xn)∞
n=0

started at x with transition probabilities given by ω. That is, P x
ω (X0 = x) = 1, and for

n ≥ 1, y ∈ V , P x
ω (Xn+1 = y|X0, . . . , Xn) = ω(Xn, y).

Let FV be the Borel sigma field on ΩV (with respect to the product topology), and let

P be a probability measure on (ΩV , FV ) (we often leave the FV implicit and say P is a
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probability measure on ΩV ). For a given x ∈ V , we let Px = P × P x
ω be the measure on

ΩV × V N0 induced by both P and Pω. That is, for measurable events A ⊂ ΩV , B ⊂ V N0 ,

Px(A × B) =
∫

A
P x

ω (B)P (dω)

In particular, Px(ΩV × B) = E [P x
ω (B)]. For convenience, we commit a small abuse of

notation by using Px to refer both to the measure we’ve described on ΩV × V N0 and also

to its marginal Px(ΩV × ·) on V N0 . We call a measure P x
ω on V N0 a quenched measure of

a random walk in random environment on V started at x, and we call the measure Px the

annealed measure. We will usually have V = Zd for our main results, but certain intermediate

results and arguments require different state spaces.

Most of the results in this paper concern measures P that are products of the measure of

a Dirichlet distribution. However, some results are more general, and for these, we consider

walks that satisfy the following conditions:

(C1) Under P , the transition probability vectors (ωx)x∈Zd are i.i.d.;

(C2) With P -probability 1, the Markov chain induced by ω is irreducible;

(C3) There is an R > 0 such that with P -probability 1, ω(x, y) = 0 whenever |x − y| > R.

1.3.2 Random walks in Dirichlet environments

Let H = (V, E, w) be a weighted directed graph with vertex set V , edge set 

1
 E ⊆ V ×V ,

and a weight function w : E → R>0. If e = (x, y) ∈ E, we say that e is an edge from x to y,

and we say the head of e is e = y and the tail of e is e = x. We say a set S ⊂ V is strongly

connected if for all x, y ∈ S, there is a path from x to y in H using only vertices in S. To the
1

 ↑ We define weighted directed graphs in a way that precludes multiple edges from sharing the same head
and tail. However, we could expand our definition to include weighted directed multigraphs, and natural
generalizations of the results that are true for graphs as we define them would still hold. Describing these
generalizations would cause some notational inconvenience that is unnecessary for our purposes, such as
defining random walks that keep track of edges taken as well as vertices visited. Nevertheless, we use
multigraphs in some illustrations as a visual aid. Multiple edges from one vertex to another in our illustrations
can be interpreted as a single edge whose weight is the sum of the weights of the edges depicted. By the
amalgamation property reviewed in Section  1.4 , identifying or splitting these edges that share the same head
and tail does not affect the distributions of transition probability vectors between sites.
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weighted directed graph H, we can associate the Dirichlet measure PH on (ΩV , FV ), which

we now describe.

Recall the definition of the Dirichlet distribution: for a finite set I, take parameters

α = (αi)i∈I , with αi > 0 for all i. The Dirichlet distribution with these parameters is a

probability distribution on the simplex ∆I := {(xi)i∈I : ∑i∈I xi = 1} with density

D ((xi)i∈I) = C(α)
∏
i∈I

xαi−1
i ,

where C(α) is a normalizing constant. For the density with respect to the uniform measure

on ∆I , the normalizing constant is

C(α) = Γ(∑i∈I αi)
Γ(|I|)∏i∈I Γ(αi)

.

Define PH to be the measure on ΩV under which transition probabilities at the various

vertices x ∈ V are independent, and for each vertex x ∈ V , (ω(x, e))e=x is distributed

according to a Dirichlet distribution with parameters (w(e))e=x. With PH-probability 1,

ω(x, y) > 0 if and only if (x, y) ∈ E for all x, y ∈ V . We will call a random environment

chosen according to PH a Dirichlet environment on H. We will use EH to denote the

associated expectation, and Px
H and Ex

H to denote the corresponding annealed measure and

expectation.

1.3.3 Our main model

For the main model of this thesis, let N be a finite subset of Zd that spans Zd in the sense

that ∑∞
i=1(N ∪ {0}) = Zd, and let (αy)y∈N be positive weights. Let G = (Zd, E, w) be the

weighted directed graph with vertex set Zd, edge set E := {(x, y) ∈ Zd × Zd : y − x ∈ N },

and weight function w with w(x, y) = αy−x for all (x, y) ∈ E. Then PG is the law of a

Dirichlet environment on Zd satisfying (  C1 ), ( C2 ), and (  C3 ), and P0
G is the corresponding

annealed measure for a walk started at 0.
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1.3.4 Notation

When discussing RWRE on Z, we will use interval notation to denote sets of consecutive

integers rather than subsets of R. Thus, for example, we will use [1, ∞) to denote the set of

integers to the right of 0. However, we make one exception, using [0, 1] to denote the set of

all real numbers from 0 to 1.

Let Sd−1 be the unit sphere in Rd. For a direction ` ∈ Sd−1, a ∈ R, � ∈ {<, ≤, >, ≥},

and X a (finite or infinite) sequence in Zd, we define the stopping times

T `
�a = T `

�a(X) := inf{n ≥ 0 : (Xn · `) � a}.

Similarly, for a point x ∈ V or a set S ⊂ V , define

Tx = Tx(X) := inf{n ≥ 0 : Xn = x}

and

TS = TS(X) := inf{n ≥ 0 : Xn ∈ S}.

We often suppress the arguments X when the sequence intended is clear from the context.

Likewise, we suppress the ` in the directional hitting times when the direction is clear from

context. In particular, when d = 1, we always suppress the ` and assume ` = 1, so that

Xn · ` = Xn.

Finally, for any stopping time defined as an the first n ≥ 0 such that satisfying a certain

condition, we use the same notation but with a tilde (∼) over it to denote the corresponding

positive stopping time: that is, the first n > 0 satisfying the same condition.

1.4 Known results on Dirichlet environments

For a more comprehensive overview of random walks in Dirichlet environments, their

properties, known results, and techniques used to achieve those results, see [  15 ]. Here, we

review specific results that will be useful to us.

16



1.4.1 Basic properties

We begin with basic properties of Dirichlet distributions.

Property (Amalgamation). Assume (Ui)i∈I has Dirichlet distribution on ∆I with param-

eters (ai)i∈I . Let I1, . . . , Ir be a partition of I. The random vector
(∑

i∈Ik
Ui

)
1≤k≤r

on

the simplex {(xi)r
i=1 : ∑r

i=1 xi = 1} follows the Dirichlet distribution with parameters(∑
i∈Ik

ai

)
1≤k≤r

.

Property (Restriction). Assume (Ui)i∈I has Dirichlet distribution on ∆I with parameters

(ai)i∈I . Let J be a nonempty subset of I. The random vector
(

Ui∑
j∈J

Uj

)
i∈J

, which takes

values on the simplex ∆J , follows the Dirichlet distribution with parameters (ai)i∈J and is

independent of ∑j∈J Uj. It is also independent of (Uk)k /∈J .

By the amalgamation property, the marginal distribution of each coordinate of a Dirichlet

random vector is a beta distribution. The next property bounds the probability that a beta

random variable is small.

Property (Moments). Assume X is a beta random variable with parameters (a, b). Then

there exists constants 0 < c < C such that for all ε ∈ [0, 1],

cεa ≤ P (X < ε) ≤ Cεa. (1.1)

In particular, E
[

1
Xs

]
< ∞ if and only if s < a.

The amalgamation and restriction properties are also stated in [  15 ], but the last sentence,

“It is also independent of (Uk)k /∈J ,” is not contained in the statement there. However, it fol-

lows from the rest of the restriction property. Let I = {1, . . . , n}, and let J = {1, . . . , m}.

Then since
(

Ui∑m+1
j=1 Uj

)m+1

i=1
follows a Dirichlet distribution, we can apply the restriction prop-

erty to get 
Ui∑m+1

j=1 Uj∑m
r=1

Ur∑m+1
j=1 Uj


m

i=1

⊥⊥
m∑

r=1

Ur∑m+1
j=1 Uj

,

from which it follows that (
Ui∑m

r=1 Ur

)m

i=1
⊥⊥ Um+1∑m+1

j=1 Uj

. (1.2)
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By a similar argument, we get

(
Ui∑m+1

r=1 Ur

)m+1

i=1
⊥⊥ Um+2∑m+2

j=1 Uj

. (1.3)

But since both sides of ( 1.2 ) are determined by the left side of ( 1.3 ), it follows that

(
Ui∑m

r=1 Ur

)m

i=1
,

Um+1∑m+1
j=1 Uj

, and Um+2∑m+2
j=1 Uj

are all independent. Continuing the argument in the same manner, we see that all of the

following are independent:

(
Ui∑m

r=1 Ur

)m

i=1
,

Um+1∑m+1
j=1 Uj

,
Um+2∑m+2
j=1 Uj

, . . . ,
Un−1∑n−1
j=1 Uj

, Un. (1.4)

Now (Uk)n
k=m+1 is a function of the last n−m terms of ( 1.4 ) (that is, all terms but the first),

and so it is independent of the first.

1.4.2 Edge reinforcement

Dirichlet environments were first studied for their connection to a stochastic process called

a directed edge reinforced random walk (DERRW), which we now define. For a weighted

directed graph H = (V, E, w), and for an initial vertex x0 ∈ V , we define the stochastic

processes (Xn)∞
n=0 and (r(e, n))e∈E,n≥0 as follows: with probability 1, X0 = x0 and r(e, 0) =

w(e) for all e. If Xn = x and e1 is an edge with e1 = x (i.e., the edge is rooted at x),

then the walk takes edge e1 (so that Xn+1 = e1) with probability r(e1,n)∑
e=x

r(e,n) . Each time

an edge is taken, its weight r is increased by 1; otherwise, weights do not change. That is,

r(e, n + 1) =

r(e, n) + 1 if (Xn, Xn+1) = e

r(e, n) otherwise
. The process (Xn)∞

n=0 is the DERRW on H

started at x0. The following lemma was first shown in [  26 ] and [ 21 ]. It can be shown using

the fact that asymptotic proportions of colors in a Pólya urn follows a Dirichlet distribution,

together with de Finetti’s theorem.
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Lemma 1.4.1 ([ 15 ], Lemma 2). Let V be a set, and let H = (V, E, w) be a weighted directed

graph with vertex set V . Then the law of a DERRW on H started at vertex x ∈ V is the

annealed law Px
H of the RWDE on H.

1.4.3 Time reversal lemma

We now describe an important time-reversal lemma for Dirichlet environments. Let

H = (V, E, w) be a weighted directed graph, and let PH be the associated product Dirichlet

measure on the set ΩV of environments on V . For a vertex x ∈ V , the divergence of x in

H is div(x) = ∑
e=x w(e) − ∑

e=x w(e). If the divergence is zero for all x, we say the graph

H has zero divergence. Now if H is a finite, strongly connected graph, then for PH–a.e.

ω ∈ ΩV , there exists an invariant probability for the Markov chain corresponding to ω. Call

this invariant measure πω. Define the time reversed environment ω̌ by

ω̌(x, y) := πω(y)
πω(x)ω(y, x)

We can check that ω̌ is an environment by noting

∑
y∈V

ω̌(x, y) = 1
πω(x)

∑
y∈V

πω(y)ω(y, x) = 1.

Moreover, the probability, under ω, of taking any loop is equal to the probability, under ω̌,

of taking the reversed loop. To see this, note that if vn = v0, then

P v0
ω̌ (X1 = vn−1, X2 = vn−2, . . . , Xn = v0) =

n−1∏
i=0

ω̌(vi+1, vi)

=
n−1∏
i=0

πω(vi)
πω(vi+1)

ω(vi, vi+1)

=
∏n−1

i=0 πω(vi)∏n−1
i=0 πω(vi+1)

n−1∏
i=0

ω(vi, vi+1)

=
n−1∏
i=0

ω(vi, vi+1)

= P v0
ω (X1 = v1, X2 = v2, . . . , Xn = vn).
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The following lemma can be proven using Lemma  1.4.1 . It was first proven analytically in

[ 27 ], and its probabilistic proof was first given in [  28 ]. Let Ȟ be the graph made by reversing

all edges of H and keeping the same weights 

2
 , and let PȞ be the associated measure on ΩV .

Lemma 1.4.2 ([ 15 ], Lemma 3.1). If the graph H has zero divergence, then the law of ω̌ is

PȞ.

In other words, drawing an environment ω according to PH and then time-reversing it is

the same as reversing the edges of H to get Ȟ and then drawing an environment according

to PȞ. This lemma implies that the probability, under PH, of taking any loop is equal to

the probability, under PȞ, of taking the reversed loop. Indeed, for our purposes, the use of

Lemma  1.4.2 comes from the following corollary.

Corollary 1.4.3. Let H be as described above, and let x, y ∈ V be such that there is an edge

e from y to x in H. Then, letting T̃x denote the first positive hitting time of x,

1. The law of P x
ω (XT̃x−1 = y) under PH is the law of P x

ω (X1 = y) = ω(x, y) under PȞ.

2. Px
H(XT̃x−1 = y) = Px

Ȟ(X1 = y) = w(y,x)∑
v∈V

w(v,x) .

The formula for the probability as a fraction comes from either Lemma  1.4.1 or the

amalgamation property and the fact that the expectation of a beta random variable with

parameters (a, b) is a
a+b

.

1.4.4 Moments of quenched Green functions

The next lemma we recall was proven by Tournier [  29 ]. We will refer to it as Tournier’s

lemma. To formally state this lemma, we need some notation. Let H = (V, E, w) be a

weighted directed graph. For a walk X = (Xn)∞
n=0 on V with x ∈ V , Nx(X) = #{n ∈ N0 :

Xn = x} is the number of times the walk is at site x. We usually write it as Nx if we are

able to do so without ambiguity. For a subset S ⊂ V , let NS = ∑
x∈S Nx. Also, for a set

S ⊆ V , define

βS :=
∑

e∈S, e/∈S

w(e). (1.5)

2
 ↑ Formally, if e = (a, b), then let ě = (b, a). Then define w̌(ě) = w(e) and Ě = {ě : e ∈ E}. Now let

Ȟ = (V, Ě, w̌).
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This parameter βS is the sum of the weights of all edges exiting the set S.

Lemma 1.4.4 (Tournier’s lemma; see [  29 ], Theorems 1 and 2). Let H = (V ∪ {∂}, E, w)

be a finite weighted directed graph with ∂ a unique sink reachable from every other site. We

denote by PH the corresponding Dirichlet distribution on environments.

For every s > 0, the following statements are equivalent:

1. EH[Ex
ω[Nx]s] < ∞.

2. For every strongly connected subset S of V with x ∈ S, βS > s.

In particular, by letting s = 1, we see that Ex
H[Nx] < ∞ if and only if for every strongly

connected subset S of V containing x, βS > 1.

The formulation given in Theorem 1 of [  29 ] is in terms of strongly connected sets of

edges rather than vertices, but implies ours. Tournier’s original formulation is as follows:

For a weighted directed graph H = (V, E, w) and a subset A ⊂ E, let A = {e : e ∈ A},

A = {e : e ∈ A}, and A = A ∪ A. Say A is strongly connected if any two vertices in A

can communicate using only edges in A (note that this implies A = A = A). Now define

βA = ∑
e∈A w(e)1{e/∈A}.

Lemma 1.4.5 ([ 29 ], Theorem 1). Let H = (V ∪{∂}, E, w) be a finite weighted directed graph

with ∂ a unique sink reachable from every other site. Denote by PH the corresponding Dirichlet

distribution on environments. For every s > 0, the following statements are equivalent:

1. EH[Ex
ω[Nx]s] < ∞.

2. For every strongly connected subset A of E such that x ∈ A, βA > s.

Every βS for a set S of vertices is βA for the set A of edges between vertices in S. On

the other hand, for any strongly connected set A of edges, one can take S to be the set of

heads or tails of edges in A and take A′ to be the set of edges between vertices in S (so that

A ⊂ A′). Then βS = βA′ < βA. From this, one can check that Tournier’s formulation implies

ours.

In turn, Tournier’s original version can be deduced from ours by considering a modified

graph H′ with “an extra vertex added in the middle of each edge”; that is, if e is an edge
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from x to y in H with weight w(e), then H′ has an extra vertex ze, and instead of an edge

from x to y, there is an edge from x to ze with weight w(e) and an edge from ze to y with

weight 1 (this weight is arbitrary, as it is the only edge exiting ze). Thus, every strongly

connected set A of edges in H corresponds to a strongly connected set S(A) of vertices in

H′, with βS(A) = βA. Moreover, for any x ∈ V , drawing a path on H′ according to Px
H′ and

then deleting the extra vertices gives a path on H drawn according to Px
H.
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2. MAIN RESULTS

This chapter outlines the main results of the thesis, provides additional background on them,

and gives an idea of the proofs.

2.1 0-1 law

A natural first direction of study for RWRE on Zd is characterizing directional transience.

For ` ∈ Sd−1, define

A` := {X ∈ (Zd)N0 : lim
n→∞

Xn · ` = ∞}.

In 1981, Kalikow [  30 ] asked whether, for i.i.d. RWRE in 2 dimensions, the x-coordinate of

the walker’s position must approach infinity with probability either 0 or 1. He was able to

show that the walk hits the y-axis infinitely often with probability either 0 or 1. In other

words, if ` is a unit vector in the x direction, Kalikow showed P0(A`∪A−`) ∈ {0, 1} and asked

whether it can be shown that P0(A`) ∈ {0, 1}. In 2001, Zerner and Merkl [ 23 ] answered this

question in the affirmative for nearest-neighbor, i.i.d., elliptic RWRE in 2 dimensions, and

not just for the x direction but for any direction ` ∈ S1. They also showed that the i.i.d.

assumption is necessary by providing a non-i.i.d. counterexample where the 0-1 law fails. A

0-1 law for directional transience of nearest-neighbor, i.i.d. RWRE in dimensions d ≥ 3 is

still a major open conjecture. We extend the result of Zerner and Merkl by removing the

nearest-neighbor assumption, showing that for i.i.d. elliptic RWRE with bounded jumps on

Z2, the 0-1 law holds for all directions ` ∈ S1. Our proof is largely based on that of [  31 ], which

is a simplification of the proof given in [ 23 ]. However, the removal of the nearest-neighbor

assumption creates a need for some additional work.

Theorem 2.1.1. Let d = 2, and let assumptions (  C1 ), (  C2 ), and ( C3 ) hold, and let ` ∈ S1.

Then P0(A`) ∈ {0, 1}, where A` is the event limn→∞ Xn · ` = ∞.

 Jump to proof. 

The idea behind Zerner’s proof in [  31 ] is that if the probability of transience in both

direction ` and direction −` is positive, then with non-vanishing probability, one should be

able to start two walks in the same environment on different sides of a wide strip and have
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both walks cross the strip and exit on the opposite side from where they started (call this

the strip traversal event). If the starting points are chosen correctly, this should lead to the

paths of the walks intersecting at least half the time. But if the paths intersect, it is at a

point that at least one of the walks has traveled a long distance to reach. A walk started on

the right side of a strip (thinking of ` as “to the right”) that has traveled a great distance

to the left ought to have reached a point in the environment where there is a very high

probability of being transient to the left. However, on the event in question, there is also

a path started from the left side of the strip that goes through that same point and then

travels all the way to the right side of the strip. Thus, if the two walks both cross the strip

and their paths intersect, then an event of vanishingly small probability must occur. But if

the paths intersect at least half the time the strip traveral event occurs, then the probability

of the strip traversal event must vanish as the strip gets wider and wider. This implies that

the probability of transience in one direction or the other must be zero.

The difficulty in adapting this proof to the case of bounded jumps is that it become possi-

ble for the paths of walks to “cross” (in the sense that the continuous linear interpolations of

their paths cross) without actually sharing a vertex. One can, however, use the boundedness

of jumps to show that in this case, the paths must come within a bounded distance of each

other. Showing that they come within a bounded distance of each other at least half the time

requires dealing with a couple of fringe cases that do not show up under a nearest-neighbor

assumption. But the more significant challenge is to use the proximity of the two paths to

get the same result as in Zerner’s argument. To do this, we use the fact that if one walk

comes close enough to the path of the other, its annealed probability of actually landing on a

vertex of that path is bounded from below. Unlike in Zerner’s argument, we are not able to

get any sort of a bound on the probability that the strip traversal event occurs and the paths

intersect at some vertex. But we are able to compare the probability of the strip traversal

event to the probability that one of the walks crosses a strip and exits on the opposite side,

and that the other walk travels a long distance before intersecting the path of the first walk.

This event has similar properties to the strip traversal event with intersection, and we are

able to show that its probability vanishes.
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2.2 Directional recurrence of balanced RWDE on Zd

We give an application of our 0-1 law to RWDE. For a given direction ` ∈ Sd−1, the

question of transience and recurrence in direction ` is completely understood for nearest-

neighbor RWDE, due to [ 28 ], [  14 ], and [  22 ]. Tournier remarks in [  22 ] that many of the results

used in the characterization of transience do not rely on the nearest-neighbor assumption,

so much of what was known in the nearest-neighbor case carries over to the bounded-jumps

case.

However, not everything carries over directly. One crucial step toward characterizing

directional transience is a 0-1 law. As Tournier points out in his aforementioned remark,

the proof of the 0-1 law for RWDE in dimensions d ≥ 3 given in [  14 ] does not require the

nearest-neighbor assumption, but the proof for RWRE in dimension d = 2 in [  23 ] and [  31 ]

does require the nearest-neighbor assumption. Our extension of the 0-1 law for d = 2 to

bounded jumps means that for RWDE with bounded jumps, the 0-1 law is now proven for

all dimensions.

Removing the nearest-neighbor assumption creates one other obstacle to fully character-

izing directional transience in a given direction. When the annealed drift is zero, the proof

of directional recurrence in the nearest-neighbor argument relies on a symmetry that does

not necessarily exist in the bounded-jump case. Additional work is therefore needed to prove

that zero drift implies recurrence in any direction.

The directional recurrence/transience result known for nearest-neighbor RWDE (i.e.

when N is the set of nearest neighbors of 0) states that for a given direction ` ∈ Sd−1,

transience and recurrence in direction ` under P0
G are characterized by the relationship be-

tween ` and the annealed drift.

Theorem ([ 15 , Theorem 1]). Let P0
G be the measure of a nearest-neighbor RWDE on Zd.

Let ∆ = E0[X1] be the annealed drift, and let ` ∈ Sd−1. Then P0
G(A`) = 1 if and only if

` · ∆ > 0; otherwise, P0
G(A`) = 0.

We extend this theorem to RWDE with bounded jumps.
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Theorem 2.2.1. Let P0
G be the measure of a RWDE with bounded jumps on Zd. Let ∆ =

E0[X1] be the annealed drift, and let ` ∈ Sd−1. Then P0
G(A`) = 1 if and only if ` · ∆ > 0;

otherwise, P0
G(A`) = 0.

 Jump to proof. 

Based on Tournier’s remark in [ 22 ] (pointing out which arguments used in the proof of

the theorem from [  15 ] do not rely on the nearest-neighbor assumption), Theorem  2.2.1 is

known to be true provided ∆ 6= 0 and d 6= 2.

If ∆ 6= 0 and d = 2, we know from [  22 ] that ` · ∆ > 0 implies P0
G(A`) > 0, and from

[ 12 , Theorem 1.8] that ` · ∆ = 0 implies P0
G(A`) = 0 (the arguments in [  12 ] are given for the

nearest-neighbor case, but can be easily modified to work for environments satisfying ( C1 ),

( C2 ), and (  C3 )). From here, our 0-1 law of Theorem  2.1.1 allows us to reach the conclusion

of Theorem  2.2.1 .

The only remaining case is where ∆ = 0. In the nearest-neighbor case, ∆ = 0 implies a

symmetry that forces P0
G(A`) = P0

G(A−`) for all directions `. The 0-1 laws of [  23 ] for d = 2

and of [ 14 ] for d ≥ 3 then yield the conclusion P0
G(A`) = 0 for all `. In the bounded-jumps

case, zero drift does not imply symmetry, so even the 0-1 law of Theorem  2.1.1 is not by itself

enough to prove the theorem. Theorem  2.2.1 will be proven if we can prove the following

theorem, which will rely on Theorem  2.1.1 for the case d = 2.

Theorem 2.2.2. Let P0
G be the measure of a RWDE with bounded jumps on Zd. If ∆ = 0,

then P0
G(A`) = 0 for all ` ∈ Sd−1.

 Jump to proof. 

As is common for the proofs of results in RWDE, our proof involves comparing the

graph G to a sequence of larger and larger finite graphs (HN,L), which look like G except

possibly near boundaries, and applying Corollary  1.4.3 . The finite graphs we construct are

similar to those constructed by Tournier in [  22 ] for the characterization of transience in the

nonzero-drift case.

For simplicity, we first prove the result for directions ` with rational slopes. Extending

it to all ` is not as immediate as one might hope. Indeed, the following conjecture remains

open for general RWRE.
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Conjecture 2.2.3. Let P0 be the law of an i.i.d. RWRE on Zd, and let Sd−1 be the set of

a unit vectors in Rd. Then for all ` ∈ Sd−1, if P0(A`) > 0, then there exsts a neighborhood

U ⊆ Sd−1 such that P0(A`′) > 0 for all `′ ∈ U .

In the nearest-neighbor case of RWDE, Conjecture  2.2.3 is seen to be true from [ 15 ,

Theorem 1], and in the bounded-jump case it will follow from Theorem  2.2.1 , once it is

proven (again, it only remains to prove Theorem  2.2.2 ).

The idea behind our proof for rational directions is to define a graph HN,L using a large

slab from Zd with periodic boundary conditions, and to add a left endpoint ∂ and right

endpoint M . Edges entering and exiting the slab on the left are interpreted as edges to and

from ∂, while edges entering and exiting the slab on the right are interpreted as edges to and

from M . We also add special edges between ∂ and M . The graph will be described more

formally in the actual proof, but we give a picture of it here, in Figure  2.1 .

Figure 2.1. Graph HN,L. Here N = {(0, 1), (1, −1), (−2, 0)}, and v = (2, 1).
Boundary conditions in direction perpendicular to v are periodic; vertices la-
beled with the same letters are identified. Arrows to and from the main part
of the graph on the left are understood to originate from or terminate at ∂,
and similarly with M on the right side.

27



Due to the assumption that M= 0, we are able to make this graph satisfy the zero

divergence criterion provided the edges from ∂ to M and M to ∂ are given the same weight

W . We choose this W so that a walk started at ∂ has a 1
2 chance of stepping to M on

its first step. By Corollary  1.4.3 , the probability that the first return to 0 is by the special

edge from M is also 1
2 . We assume for a contradiction that P0

G(A−`) > 0. By the 0-1 law

of [ 16 ] for dimension d = 1, the 0-1 law of [ 14 ] for dimension d ≥ 3, or Theorem  2.1.1 for

dimension d = 2, this assumption implies P0
G(A−`) = 1. Using this fact and the fact that the

main part of the graph HN,L looks and feels like Zd (taking care to ensure that the graph

is large enough in directions perpendicular to ` that its periodic boundary conditions are

vanishingly unlikely to be used), we are able to show that the probability of a walk from ∂

reaching M by the main part of the graph before returning to ∂ vanishes as the size of the

graph increases. Thus, in the limit, the only way the first return to ∂ can be by the special

edge from M is if the first step from ∂ takes the special edge to M . However, a positive

probability of transience in direction −` also implies that if the first step from ∂ takes the

special edge to M , then there is a positive probability, bounded from below, that the walk

returns to ∂ through the main part of the graph rather than taking the special edge. Thus,

on the one hand, in order for the walk to first return to ∂ by the special edge from M , it must

step to M on its first step (which happens with probability 1
2), and then step from M to ∂

by the special edge before making its way back down through the main part of the graph

(which happens with probability bounded away from 1). This implies that the probability

that the first return to ∂ is by the special edge from M is eventually strictly less than 1
2 . On

the other hand, we have by Corollary  1.4.3 that it is exactly 1
2 . This contradiction completes

the proof.

To generalize to directions ` with irrational slopes, it is not enough to cite the result for

rational slopes. Rather, we repeat the argument more carefully, this time taking, for each L

a direction v with rational slopes, sufficiently close to ` (and approaching ` as L increases).

We define graphs HN,L in terms of these directions v. We show that appropriate upper and

lower bounds on probabilities of the walk traveling through the main part of the graph from

one endpoint to the other still hold, provided these rational directions v are close enough

to `, and provided the graphs are large enough in directions perpendicular to `. We then
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use the properties of the graphs HN,L and Corollary  1.4.3 to get the same contradiction as

before.

2.3 Ballisticity of RWDE on Z

We now consider the case d = 1. Then N is a finite subset of Z such that the GCD of

all i ∈ N is 1. Let L = min(N ) and R = max(N ). We have αi > 0 for i ∈ N . For this one-

dimensional model, also define αi := 0 for any i /∈ N , so that (αi)R
i=−L are non-negative real

numbers with αi > 0 if and only if i ∈ N . We have a random walk in a Dirichlet random

environment on Z with jumps to the left up to L steps and to the right up to R steps,

with transition probability vectors given by i.i.d. Dirichlet random vectors with parameters

(αi)i∈N . Our graph G has vertex set Z, edge set {(x, y) ∈ Z × Z : y − x ∈ N }, and weight

function (x, y) 7→ αy−x. An example with L = R = 2 is represented in Figure  2.2 (here, and

in other illustrations of graphs, we depict the case where α0 = 0, but our model does allow

for α0 > 0).

Figure 2.2. A portion of the graph G with L = R = 2.

Our main concern in Chapter  4 is to characterize ballisticity of a transient random walk

in a Dirichlet environment on G started at 0 in terms of the αi. From the irreducibility

assumption, it follows that there is an m large enough that every interval of length m is

strongly connected in G. Let m0 be such an integer, chosen large enough that also m0 ≥

max(L, R). We will use this m0 in several proofs throughout this paper.

For i.i.d. RWRE on Z with bounded jumps, there necessarily exists a deterministic v

with limn→∞
Xn

n
= v almost surely (see Appendix  A ). When the walk is recurrent, v = 0.

We assume the walk is transient to the right, so that v ≥ 0, and characterize the ballistic

regime v > 0.
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Our results on ballisticity comprise a sort of mixture of characterizations for the nearest-

neighbor cases on Z and on Zd, d ≥ 3. These characterizations are quite different from

each other, as they reflect substantially different ways that a walk may “get stuck.” (The

case d = 2 is still open.) For d ≥ 3, ballisticity has a simple characterization in terms of

a parameter κ0 (called κ in [ 14 ]). The fact that Dirichlet distributions are not uniformly

elliptic allows environments to contain arbitrarily severe “traps” where a walk can get stuck

for a long time. In fact, if enough parameters of the Dirichlet distribution are sufficiently

small, there are finite subgraphs whose annealed expected exit times are infinite, causing zero

limiting speed. It was shown in [  29 , Theorem 1] that the parameter κ0, which represents

the minimal amount of weight exiting a finite set, controls finite moments of the quenched

expected exit times of finite traps containing the origin. In the case d ≥ 3, a directionally

transient walk is ballistic if and only if κ0 > 1 [ 15 , Theorem 5], reflecting the idea that finite

traps are the only way directional transience with zero speed can occur in the case d ≥ 3.

The nearest-neighbor case d = 1, where probabilities ω(x, x + 1) of stepping to the

right are given by beta random variables with parameters (α1, α−1), is different. Here,

κ0 = α1 + α−1, and this parameter still controls finite traps, but it is possible for a walk

to have zero speed even if κ0 > 1. In fact, ballisticity is controlled by another parameter,

κ1 = α1 − α−1, which also characterizes directional transience, and which is the unique

positive number (studied in a more general setting by Kesten, Kozlov, and Spitzer in [ 32 ],

and there called κ) such that E
[(

1−ω(0,1)
ω(0,1)

)κ1] = 1. In the nearest-neighbor case d = 1, a

walk is transient to the right if and only if κ1 > 0, and in that case it is ballistic if and only

if κ1 > 1. These results come from a direct application of the characterizations of directional

transience and ballisticity given in [  1 ]. Here, as in higher dimensions, κ0 ≤ 1 is enough to

cause finite trapping that would slow the walk down to zero speed. However, because we

always have κ1 < κ0, the walk is already not ballistic in this case, and thus the value of κ1

alone determines ballisticity.

The parameters κ0 and κ1 can be given definitions that apply to our model as well. The

parameter κ0 can be defined for RWDE on any weighted directed graph. For a weighted,

directed graph H = (V, E, w) and vertex x ∈ V , one may define κ0 = κ0(H, x) as the minimal

total weight of edges exiting a finite, strongly connected set of vertices containing x in H.
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The smaller κ0(H, x) is, the greater is the propensity of a walk drawn according to Px
H to

get stuck for a long time in a finite trap containing x [ 29 ]. We give a precise definition for

our graph G in Section  4.2.1 ; see (  4.11 ) (the definition is not vertex-dependent due to the

translation-invariance of G). We do not give an explicit formula for κ0, which is defined as an

infimum over an infinite set of sums, but we show that it is in fact a minimum over finitely

many sums, and provide an algorithm to compute it directly.

For κ1, let d+ = ∑R
i=1 iαi and d− = ∑−1

i=−L |i|αi. Then κ1 := d+ − d− is the weighted

sum of the weights αi, and its sign is the sign of E0
G[X1]. In fact, let c+ and c− be the

unweighted sums ∑R
i=1 αi and ∑−1

i=−L αi, respectively. One can check using Lemma  1.4.1 , or

simply using the amalgamation property and expectation of a beta random variable, that

E0
G[X1] = κ1

c−+α0+c+ . Notice that when L = R = 1, κ1 reduces to α1 − α−1 By Theorem  2.2.1 ,

the walk is P0
G-almost surely transient in the direction of κ1 when it is not 0, and recurrent

when κ1 = 0. We will see that the parameter κ1 plays a key role in characterizing ballisticity

as well.

We show that unlike in the nearest-neighbor case L = R = 1, where we always have

κ0 > κ1, our model allows the ordered pair (κ0, κ1) to take on any value in the first quadrant

of R2; see Proposition  B.0.2 . Both κ0 and κ1 must be greater than 1 in order to achieve

ballisticity. When κ0 ≤ 1, the walk has zero speed because of the relatively high likelihood

of getting stuck in a region of bounded size for a long time. When κ1 ≤ 1, the walk has zero

speed because of the relatively high likelihood of repeatedly backtracking over regions of all

sizes. When both are greater than 1, the walk is ballistic.

The appearance of the dual possibilities of finite trapping and large-scale backtracking

seems to be a new phenomenon in RWRE with bounded jumps. Previous characterizations

of ballisticity use ellipticity assumptions strong enough to preclude finite trapping, and

therefore do not cover cases where walks can get stuck in these two different ways.

2.3.1 General ballistic criteria

While our main results are for RWDE, part of the proof requires obtaining some results

that apply to general RWRE on Z with bounded jumps. Section  4.1 provides two charac-
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terizations of ballisticity under conditions (  C1 ), (  C2 ), and ( C3 ). It was shown in [  16 ] that

under these assumptions, a 0-1 law holds for directional transience. That is, the walk is

either almost surely transient to the right, almost surely transient to the left, or almost

surely recurrent. In the recurrent case, v = 0. We provide two abstract characterizations of

ballisticity under the following additional assumption.

(C4) For P–a.e. environment ω, limn→∞ Xn = ∞, P 0
ω–a.s.

By symmetry, our characterizations also handle the case where the walk is transient to the

left, and thus by the 0-1 law of [ 16 ], completely characterize the regime v 6= 0 for all measures

P satisfying ( C1 ), ( C2 ), and ( C3 ).

The first characterization strengthens one given by Brémont, who showed (see [  33 , Theo-

rem 3.7], [  18 , Proposition 9.1]) that for a walk that is transient to the right, v > 0 if and only

if the annealed expected time to reach [1, ∞) is finite. Brémont’s works used an ellipticity

assumption that is too strong to apply to our Dirichlet environments. We therefore prove

the lemma without the assumption.

Lemma 2.3.1. Let P be a probability measure on ΩZ satisfying (  C1 ), (  C2 ), (  C3 ), and ( C4 ).

Then v > 0 if and only if E0[T≥1] < ∞, where T≥1 is the first time the walk hits [1, ∞).

 Jump to proof. 

This characterization is quite natural, given that in the nearest-neighbor case we in fact

have the identity v = 1/E0[T≥1], where the fraction is understood to be 0 if the denominator

is infinite. However, although it is natural, we do not know a way to check it directly in the

(L, R) case, even for Dirichlet environments. We therefore present a new abstract criterion

for ballisticity, showing that the walk is ballistic if and only if the annealed expected number

of returns to the origin is finite.

Lemma 2.3.2. Let P be a probability measure on ΩZ satisfying (  C1 ), (  C2 ), (  C3 ), and ( C4 ).

Then v > 0 if and only if E0[N0] = E[E0
ω[N0]] < ∞.

 Jump to proof. 

To do this, we define a “walk from −∞ to ∞” in a typical environment where transience to

the right holds. By an argument using Birkhoff’s Ergodic theorem, the almost-sure limiting
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speed of this bi-infinite walk is the reciprocal of the expected amount of time it spends at

0 under an appropriate annealed measure. Thus, the limiting speed is zero precisely when

this expectation is infinite. We show that this expectation in turn is infinite if and only if

the expected amount of time at 0 for a walk started at 0 is infinite.

Thus, the question of ballisticity is reduced to the integrability of the “Green function”

E0
ω[N0] under the measure on environments. We devote Section  4.2 to answering this question

in the case of our Dirichlet measure PG. In fact, we go further and characterize integribility

of E0
ω[N0]s for any s > 0 in terms of the Dirichlet parameters, and in particular in terms of

κ0 and κ1.

2.3.2 Finite traps of RWDE on Z

In nearest-neighbor RWDE, the underlying directed graph has an edge from x to y

precisely when x and y are adjacent. There, it can easily be shown that the worst finite

traps are just pairs of vertices, and so κ0 has an explicit formula as a minimum of d different

sums of edge weights. By contrast, our model encompasses many underlying directed graphs

(even before assignment of weights). For each underlying directed graph there is a different

formula for κ0 as a minimum of finitely many sums (as we show in Proposition  4.2.2 ), but

we do not have a general method to find the formula given a particular underlying directed

graph. This is because we have no simple general way to know what the worst finite traps

look like. However, we find the formula in several examples in Appendix  B , and show in

Proposition  4.2.1 that κ0 can be calculated directly from L, R, and the specific values of the

αi, even without a general formula in terms of the αi.

This parameter κ0 plays an important role in the integrability of E0
ω[N0]. For a set S ⊆ Z,

and for x ∈ S, define NS
x to be the amount of time a walk spends at x before leaving S

for the first time (we always have NS
x ≤ Nx). We define κ0 as an infimum of sums of edge

weights. This infimum is over an infinite set, but once we can show that it is actually a

minimum, the following theorem follows almost immediately from [ 29 , Theorem 1].

Theorem 2.3.3. For s > 0, the following are equivalent:

(a) κ0 ≤ s.
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(b) For all sufficiently large M , EG
[
E0

ω

[
N

[−M,0]
0

]s]
= ∞.

(c) For some M ≥ 0, EG
[
E0

ω

[
N

[−M,M ]
0

]s]
= ∞.

 Jump to proof. 

Letting s = 1, the implication (a)⇒(b) or (a)⇒(c) shows that if κ0 ≤ 1, then E0
G[N0] = ∞,

which by Lemma  2.3.2 implies v = 0. We include condition (b) because the implication

(a)⇒(b) allows one to arrive at the same conclusion using Lemma  2.3.1 (by showing that

κ0 ≤ 1 implies E0
G[T≥1] = ∞).

2.3.3 Large-scale backtracking of RWDE on Z

While κ0 controls the moments of the quenched expected amount of time the walk spends

at 0 before exiting a finite region of the graph, the parameter κ1 = d+ − d− controls, in

the same way, the moments of the quenched expected number of times the walk traverses

arbitrarily large regions of the graph. For x < y ∈ Z, we define the following functions of a

walk X:

• Nx,y(X) = #
{
n ∈ N0 : Xn = x, sup{j < n : Xj = y} > sup{j < n : Xj = x}

}
is the

number of times the walk hits x after more recently having hit y, or the number of

“trips from y to x”.

• N ′
x,y(X) := #

{
n ∈ N0 : Xn ≤ x, sup{j < n : Xj ≥ y} > sup{j < n : Xj ≤ x}

}
is the

number of trips leftward across [x, y].

Again, we write these as Nx,y and N ′
x,y if we can do so without ambiguity. Note that

Nx ≥ Nx,y, and also N ′
x,y ≥ Nx,y. We prove the following theorem.

Theorem 2.3.4. Let κ1 > 0, so that the walk is transient to the right. Then, if s > 0, the

following are equivalent:

(a) κ1 > s.

(b) There is an M ≥ 0 such that for all x, y ∈ Z with y − x ≥ M , EG
[
E0

ω[N ′
x,y]s

]
< ∞.
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(c) There exist x < y ∈ Z such that EG [E0
ω[Nx,y]s] < ∞.

 Jump to proof. 

The proof of Theorem  2.3.4 is long and naturally divides into two parts, so we prove the

parts separately as Proposition  4.2.4 and Proposition  4.2.5 . Letting s = 1, the contrapositive

of the implication (c)⇒(a) tells us that if κ1 ≤ 1, then E0
G[N0] = ∞, which by Lemma  2.3.2 

implies v = 0.

We informally describe some of the ideas behind the proof of Theorem  2.3.4 here, assum-

ing for the sake of simplicity that we are interested in the case s = 1. To understand the

relevance of κ1 in determining ballisticity, we can look at the graph G+, a modified version

of the graph G, which is half-infinite and has zero divergence. We define the graph formally

in Section  4.2.2 , but we show it now in Figure  2.3 . A lemma from [ 22 ] states that under

PG+ , the quantity P 0
ω(T̃0 = ∞) is distributed as a beta random variable with first parameter

κ, and thus its reciprocal has finite moments up to (but not including) κ1.

Figure 2.3. Graph G+.

If κ1 ≤ 1, then in the modified graph, one expects an infinite number of returns to 0. We

use this fact to prove that in the original graph G, one expects an infinite number of returns

from [1, R] to (−∞, 0]. To do this, we couple transition probabilities in the original graph

with corresponding transition probabilities in the modified graph. See Figure  2.4 .

Figure 2.4. A coupling between transition probabilities in G and G+.
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The coupling is tricky, since the transition probabilities in the two graphs have different

dependence relationships, and are also not distributed in the same way. However, the tran-

sition probabilities are all mixtures of independent beta random variables. By looking at the

first parameters of these beta random variables, we are thus able to define “coupling event”

of positive probability, on which the beta random variables used for G are all smaller than

the corresponding ones used for G+. This coupling event is independent of the transition

probabilities in the graph G+. Due to the differences in dependence relationships, the cou-

pling event does not automatically give us transition probabilities in G that are all smaller

than the corresponding ones in G+. However, a certain random ordering of head vertices

in the coupling (according to probability of not backtracking to 0) allows us to get around

the dependence problems. We are ultimately able to show that on the coupling event, the

maximum probability in the original graph G, starting at 0 or any site to its left, of stepping

to the right and never returning, is bounded above by a multiple of the corresponding prob-

ability in the modified graph G+. Since the coupling event has positive probability and is

independent of probabilities in G+, the fact that one expects an infinite number of returns to

0 in G+ then implies that one also expects an infinite number of returns to [1 − L, 0] in G. A

somewhat more careful analysis gives an infinite expected number of returns to 0 as well as

an infinite expected number of traversals of [−M, 0] for any M > 0. Since this expectation

is infinite regardless of where the walk starts, translation invariance gives us the theorem for

the case κ1 ≤ 1.

The case where κ1 > 1 turns out not to be necessary for our characterization of ballisticity.

However, it gives us a better understanding of the way in which the parameter κ1 affects

large-scale backtracking. To handle that case, we again use a coupling-type argument. The

vertex in [1, R] with the best quenched probability of never backtracking to 0 has the same

distribution in G and G+, as does the non-backtracking probability at this vertex. Thanks to

the lemma from [  22 ] about G+, we are able to get good control of moments of the reciprocal

of this probability. We then choose M large enough that a walk started to the right of M is

highly likely to hit a vertex with a non-backtracking probability as good as that of the best

vertex in [1, R] before backtracking to 0. An application of Hölder’s inequality gives us the

result we need.
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2.3.4 Full ballisticity characterization for RWDE on Z

Combining the theorems stated so far, we can see that if κ0 ≤ 1, then the walk is not

ballistic due to finite trapping, and that if κ1 ≤ 1, then the walk is not ballistic due to

large-scale backtracking. We would like to show that if both parameters are greater than 1,

then the walk is ballistic. For every environment ω on Z and every M > 0, we have

E0
ω[N0] = E0

ω

[
N

[−M,M ]
0

]
E0

ω

[
#
{Times exiting [−M, M ]

and then returning to 0

}]
. (2.1)

The first expectation on the right relates to finite trapping, and the second to large-scale back-

tracking. By Theorem  2.3.3 , the term E0
ω

[
N

[−M,M ]
0

]
has finite moments up to κ0 under PG for

M sufficiently large. And the number of times exiting [−M, M ] and returning to 0 is between

N−M−1,0+N0,M+1 and N ′
−M−1,0+N ′

0,M+1, so the term E0
ω

[
#
{Times exiting [−M, M ]

and then returning to 0

}]
has

finite moments up to κ1 by Theorem  2.3.4 . If the two terms on the right side of ( 2.1 ) were in-

dependent under PG, we could conclude that EG[E0
ω[N0]s] < ∞ if and only if s < min(κ0, κ1).

However, they are not independent. We therefore ask whether it is possible that the phe-

nomena of finite trapping and large-scale backtracking may conspire together to prevent

ballisticity, even if neither is strong enough to do it on its own. This question is of interest

for general RWRE on Z with bounded jumps.

Question 2.3.1. Let P be a probability measure on ΩZ satisfying (  C1 ), (  C2 ), (  C3 ), and

( C4 ), under which both terms on the right of ( 2.1 ) have finite expectation for all M ; that is,

E
[
E0

ω

[
N

[−M,M ]
0

]]
< ∞ and E

[
E0

ω

[
#
{Times exiting [−M, M ]

and then returning to 0

}]]
< ∞. Does it necessar-

ily follow that E0[N0] = E[E0
ω[N0]] < ∞ (and thus that the walk is ballistic)?

We are able to answer this question in the affirmative for our Dirichlet model. In fact,

we characterize the finiteness of all moments of E0
ω[N0] under PG.

Theorem 2.3.5. Assume κ1 > 0. Then EG
[
(E0

ω[N0])s
]

< ∞ if and only if s < min(κ0, κ1).

 Jump to proof. 

Using a symmetry argument for the case κ1 < 0 and combining this result with Lemma

 2.3.2 , we get a complete characterization of ballisticity.
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Theorem 2.3.6. The walk is ballistic if and only if min(κ0, |κ1|) > 1.

 Jump to proof. 

We describe our proof Theorem  2.3.5 informally, focusing on the case where s = 1. We

assume transience to the right. Due to Theorems  2.3.3 and  2.3.4 , we need only address

the case min(κ0, κ1) > 1. As in the proof of Theorem  2.3.4 when κ1 > 1, we focus on the

“best site” in a set of R consecutive sites—the site in the set that has the highest quenched

probability of not backtracking to the left of that set. Here, we compare such a “best site”

in [1, R] in G+ with “best sites” in strips of length R that lie just to the right of strips of

length m in G, where m is an integer large enough that all vertices in [1, m] communicate

within [1, m]. We take M to be a large multiple of m, containing many strips of length m.

Then the “best strip” is the one in which all sites can most easily reach all sites just to the

right of the strip. We depict the comparison in Figure  2.5 

Figure 2.5. The comparison between best sites in G+ and G.

We now give a simplified, informal version of the comparisons used in the argument.

We will give the argument in full detail later on. We note that for any environment ω, the

number of visits to 0 is a geometric random variable under P 0
ω . Thus,

E0
ω[N0] = 1

P 0
ω(T̃0 = ∞)

.
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From this, we get

E0
ω[N0] ≤ 1

P 0
ω

(
Reach best strip
on 1st excursion

) · 1

P b. strip
ω

(
Exit strip
at best site

) · 1
P b. site

ω (Never backtrack)

=
∑

strips

1strip is best

P 0
ω

(
Reach strip on
1st excursion

)
· P b. strip

ω

(
Exit strip
at best site

)
· P b. site

ω (Never backtrack)

≤ 1

P b. strip
ω

(
Exit strip
at best site

) ∑
strips

1

P 0
ω

(
Reach strip on
1st excursion

)
· P b. site

ω (Never backtrack)
.

We want to apply Hölder’s inequality to show that the left hand side has finite expectation

under P . We can show that P 0
ω(Reach strip on 1st excursion)−1 has finite moments up to

min(κ0, d+) ≥ min(κ0, κ1). And P b. site
ω (Never backtrack)−1 has finite moments up to κ1 by

comparison with the modified graph. The two terms in the denominator of the sum are

independent and the sum has finitely many terms, so the sum has finite moments up to

min(κ0, κ1) > 1. By choosing M large enough that there are many strips of size m, and

the fraction in front of the sum has sufficiently high finite moments, we are able to apply

Hölder’s inequality and get the result.

2.4 Acceleration

The purpose of Chapter  5 is to set up a mechanism for comparing our results on ballisticity

with those known for RWDE in higher dimensions. The concept of finite trapping—that is,

the existence of finite regions in which a walk is expected to spend an infinite amount of

time before exiting for the first time—is not tied to any particular dimension. Large-scale

backtracking, on the other hand, is a very one-dimensional concept. Nevertheless, the idea

that, a priori, there could be global factors that cause a directionally transient walk to have

zero speed regardless of finite trapping effects seems intuitively intelligible in all dimensions,

and it would be desirable to formulate in a precise way the question of whether such large-

scale slowing exists.
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We give one such formulation here, and prove an answer to the question for our model in

Section 6. Our formulation is inspired by a remark by Sabot and Tournier in [  15 ] regarding

one of the implications of the method Bouchet used in [ 14 ]. In the process of characterizing

directional transience for the case d ≥ 3, Bouchet showed that in the zero-speed case κ0 ≤ 1,

accelerating the walk through finite traps yields a continuous-time walk that is ballistic. To

do this, she considered, for each environment ω, a continuous-time random walk on Zd with

exponential waiting times, whose jump rate from x to y is a multiple of ω(x, y) that is fixed

for each x and depends only on the environment within a fixed radius of x. Because the

jump rates are proportional to ω(x, y), the next vertex visited is distributed according to

the measure ω(x, ·). Thus, Bouchet’s continuous-time walk started at x follows the path

of a walk distributed according to P x
ω . Accelerating the jump rates in proportion to the

strength of finite traps in the quenched environment allows the continuous-time walk to

avoid spending a large amount of time in traps of bounded size while preserving larger-scale

behaviors. Bouchet showed that for nearest-neighbor RWDE in Zd, d ≥ 3, an appropriate

acceleration scheme could always yield a ballistic walk.

Bouchet’s motivation for introducing this acceleration scheme was not to study ballistic-

ity, but to study transience. The acceleration scheme yields a walk with for which there is

an invariant measure for the environment from the point of view of the particle that is abso-

lutely continuous with respect to the distribution of the initial environment. This yields a 0-1

law for directional transience, which necessarily also applies to the original (unaccelerated)

walk. As a byproduct, however, it implies ballisticity of the accelerated walk, and as Sabot

and Tournier remark [  15 , Remark 7], Bouchet’s results demonstrate that finite trapping is

in some sense the only obstacle to ballisticity, because accelerating through them causes the

walk to be ballistic.

Motivated by Bouchet’s work and by this remark from [ 15 ], we define the term “essential

slowing” to describe a situation where no acceleration scheme like Bouchet’s can yield a

ballistic walk. We show that in our model, essential slowing is equivalent to large-scale

backtracking being significant enough to cause zero speed. Thus, unlike in the higher-

dimensional case Bouchet studied, essential slowing can occur in our model, and in fact can

occur with or without finite traps.
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In order to precisely define essential slowing, we must define a specific class of continuous-

time random walks. Say a Bouchet acceleration function on Zd is a measurable function A

from the space ΩZd of environments on Zd to the space of distributions of positive random

variables, where A(ω) only depends on ω[−M,M ] for some positive integer M , a condition

which ensures that the acceleration is only based on traps of bounded size.

For any environment ω on Zd, and any point x ∈ Zd, let θxω be the shifted environment

defined by θxω(a, b) = ω(x + a, x + b). Now for an environment ω on Zd, a point x ∈ Zd, and

a Bouchet acceleration function A, we can define a continuous-time Markov chain (Xt)t≥0

on Zd where X0 = x almost surely, and the walk stays at x for a time distributed according

to A(θxω) before jumping to a point chosen according to the transition probabilities given

by ω. Whenever the process hits a point a ∈ Z, it remains there for an amount of time

distributed according to A(θaω) and independent of all other information about the history

of the process before jumping to a point chosen according to ω. Let P x
ω,A be the law of

this process. Thus, the sequence of vertices visited (up to immediate repetitions of the

same vertex, if there are self-loops) has the same distribution under P x
ω and P x

ω,A. We let

Px
G,A be the corresponding annealed law. As in the discrete-time case, there is necessarily a

Px
G,A-almost-sure limiting velocity v(A) ≥ 0, at least when the walk is directionally transient.

Remark 2.4.1. If A ≡ δ1 (that is, if A(ω) is the distribution of a degenerate random variable

that is deterministically 1), then the continuous-time walk (Xt)t≥0, distributed according to

P x
ω,A and observed only at integer times t = 0, 1, 2 . . ., follows precisely the same law as the

walk (Xn)∞
n=0 under P x

ω . Thus, our discrete model may be thought of as a special case of

this continuous-time model.

In a sense, the most natural acceleration scheme is one where A(ω) is the distribution of

an exponential random variable whose expectation depends on ω, which allows the acceler-

ated process to be a continuous time Markov chain. Indeed, these are the functions Bouchet

considered. However, our definition allows for more general distributions in order to incor-

porate the possibility A ≡ δ1, which allows proofs to more conveniently cover accelerated

and unaccelerated walks at the same time.
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An important feature of Bouchet acceleration functions is that because they only depend

on the environment a finite distance from the origin, slowing of the walk can be corrected

by an appropriate Bouchet acceleration function only when it is due to finite traps. Thus,

these functions can test whether factors other than finite traps are by themselves sufficient

to prevent ballisticity.

Definition 2.4.2. A probability measure P on ΩZd under which the walk is almost surely

transient in some direction is said to have essential slowing if, for any Bouchet acceleration

function A, it is the case that v(A) = 0.

In contrast to the nearest-neighbor case d ≥ 3, nearest-neighbor RWDE on Z do allow for

essential slowing. In fact, we show that in our bounded-jump model, essential slowing occurs

exactly when κ1 ≤ 1. That is, essential slowing corresponds to large-scale backtracking.

Theorem 2.4.1. Assume κ1 6= 0. Then PG has essential slowing if and only if |κ1| ≤ 1.

 Jump to proof. 

The proof is a fairly straightforward translation of our previous results and arguments

to the setting of accelerated walks.

We may also contrast our model with the one-dimensional nearest-neighbor model: sup-

pose the transition probabilities ω(x, x + 1) are all beta random variables with parameters

(α1, α−1), and that α1 6= α−1, so that the walk is transient. Then finite traps occur if and only

if α1 + α−1 ≤ 1, but by Theorem  2.4.1 , essential slowing occurs if and only if |α1 − α−1| ≤ 1.

Hence finite traps imply essential slowing. Unlike the nearest-neighbor models of Zd, both

for d = 1 and for d ≥ 3, our model allows essential slowing and finite traps to each occur

with or without the other. We illustrate this difference in Tables  2.1 ,  2.2 , and  2.3 .

A well known conjecture states that for iid, uniformly elliptic RWRE in d ≥ 2, directional

transience implies ballisticity. Sabot and Tournier [ 15 , Remark 7] suggest a related conjecture

for all i.i.d. RWRE in d ≥ 2 (whether uniformly elliptic or not), which our definition of

essential slowing allows us to make explicit.

Conjecture 2.4.2. For irreducible, iid, directionally transient RWRE in d ≥ 2, essential

slowing is impossible. That is, there always exists a Bouchet acceleration function A such

that v(A) 6= 0.
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Table 2.1. Nearest-neighbor RWDE on Z
Essential Slowing No Essential Slowing

Finite Traps 3 7

No Finite Traps 3 3

Table 2.2. Nearest-neighbor RWDE on Zd, d ≥ 3
Essential Slowing No Essential Slowing

Finite Traps 7 3

No Finite Traps 7 3

Table 2.3. RWDE on Z with bounded jumps
Essential Slowing No Essential Slowing

Finite Traps 3 3

No Finite Traps 3 3
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Because uniformly elliptic environments have no finite trapping effects at all in the sense

that the quenched expected exit time from any box of bounded size is almost surely bounded,

there is reason to suspect that the above conjecture implies the classic conjecture about

uniformly elliptic RWRE in d ≥ 2. However, for regimes that are not uniformly elliptic

but have finite annealed expected exit times from every box, one could still ask a question

analogous to Question  2.3.1 . If every box has finite annealed expected exit time and there

is no essential slowing, can one conclude that the walk is ballistic?

Question 2.4.1. Let P be a probability measure on ΩZd satisfying (  C1 ), (  C2 ), and (  C3 ), and

suppose there is an almost-sure limiting direction. Suppose essential slowing does not occur,

and also that E

[
E0

ω

[
#
{

Times exiting [−M, M ]d
and then returning to 0

}]]
< ∞ for all M . Does it necessarily

follow that the walk is ballistic?

In one dimension, we suspect that this question is equivalent to Question  2.3.1 , and our

results show that it is equivalent for RWDE.
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3. DIRECTIONAL TRANSIENCE AND RECURRENCE

In this chapter, we prove our results about directional transience, first a 0-1 law for RWRE

on Z2 with bounded jumps, and then our characterization of directional transience in a given

direction for RWDE on Zd with bounded jumps.

3.1 0-1 Law

First, we extend the 0-1 law of [  23 ] and [  31 ] for RWRE on Z2 to the case where bounded

jumps are allowed.

Theorem (Theorem  2.1.1 ). Let d = 2, and let assumptions ( C1 ), (  C2 ), and (  C3 ) hold, and

let ` ∈ S1. Then P0(A`) ∈ {0, 1}, where A` is the event limn→∞ Xn · ` = ∞.

Proof of Theorem  2.1.1 . For y ∈ Z2 and a path γ = (x0, x1, . . . , xn) (which is a path of

length n, and is a loop if xn = x0), define y + γ := (y + x0, y + x1, . . . , y + xn). This is simply

a space shift of the path γ. For a path γ = (x0, x1, . . . , xn), we will talk about the annealed

probability of γ, or the probability that X takes γ. This simply means

Px0(X0 = x0, X1 = x1, . . . , Xn = xn).

Say that γ is a possible path if it has positive annealed probability. Note that a loop (x0) of

zero length has annealed probability 1, since Px0(X0 = x0) = 1.

Now by assumption (C2), there is a path of positive annealed probability connecting any

two points. Let M be large enough that for any vertex x in a closed unit disc of radius 2R

centered at 0, there is a path of positive probability from 0 to x with length no more than

M .

By Kalikow’s 0-1 law (see Appendix  A ), P0(A` ∪ A−`) ∈ {0, 1}. Thus, it suffices to show

that P0(A`)P0(A−`) = 0 under the assumption that P0(A` ∪ A−`) = 1. From the proof of

Kalikow’s 0-1 law, one gets that P0(A`) > 0 if and only if P0(T<0 = ∞) > 0. Thus, it suffices

to show

P0(T<0 = ∞)P0(T>0 = ∞) = 0. (3.1)
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For a, b ∈ R, define the event

Gb
a :=


{T≥b < T<a} if b > a;

{T≤b < T>a} if b < a
.

Note that for fixed a,

lim
b→∞

Gb
a = {T<a = ∞}; lim

b→−∞
Gb

a = {T>a = ∞}. (3.2)

Let L > 0, and fix a unit vector `⊥ perpendicular to `. Choose a sequence zL ∈ Z2 such

that

• xL := zL · ` ≥ 2L,

• With positive P0-probability, XT≥2L
= zL, and

• zL · `⊥ is a median of the distribution of XT≥2L
· `⊥ under the measure P0(·|G2L

0 ). That

is, P0(XT≥2L
· `⊥ > zL · `⊥|G2L

0 ) ≤ 1
2 and P0(XT≥2L

· `⊥ < zL · `⊥|G2L
0 ) ≤ 1

2 .

Due to the allowance of jumps, zL may not be uniquely defined for each L—for example, if

` = (1, 0) and a jump of two steps to the right is possible, then (2L, h) and (2L +1, h) would

both be candidates for zL for some h—but one may, for instance, always take the candidate

with the smallest ` component. Now consider two independent random walks X1 = (X1
n)n

and X2 = (X2
n)n moving in the same environment, with the first walk starting at 0 and the

second starting at zL. For ω ∈ ΩZ2 and a, b ∈ Z2, let P a,b
ω be the product measure P a

ω × P b
ω

on the set (Z2)N0 × (Z2)N0 with typical element (X1, X2). Let Pa,b be the corresponding

annealed measure.
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We consider the “strip traversal event” G2L
0 × G0

xL
, which is roughly the event that both

walks cross the strip {0 ≤ x · ` ≤ 2L} before leaving it; the walk starting at 0 is in G2L
0 ,

while the walk starting at zL is in G0
xL

. Zerner shows 

1
 in [ 31 ] that

P0(T<0 = ∞)P0(T>0 = ∞) = lim
L→∞

P0,zL(G2L
0 × G0

xL
). (3.3)

Now consider the following three subsets of the strip traversal event:

• OL, the opposite-sides event. This is the event that X1 ∈ G2L
0 , X2 ∈ G−L

xL
, and[

(X1
T≥2L

− zL) · `⊥
] [

X2
T≤0

· `⊥
]

< 0.

• IL, the intersection event. This is the event that X1 ∈ G2L
0 , X2 ∈ G−L

xL
, and for some

0 ≤ m ≤ T≥2L(X1), 0 ≤ n ≤ T≤0(X2), X1
m = X2

n.

• PL, the proximity event. This is the event that X1 ∈ G2L
0 , X2 ∈ G−L

xL
, and for some

0 ≤ m ≤ T≥2L(X1), 0 ≤ n ≤ T≤0(X2), |X1
m − X2

n| ≤ 2R.

Clearly IL ⊂ PL. We claim

G2L
0 × G−L

xL
= OL ∪ PL = OL ∪ PL ∪ IL. (3.4)

The events OL and PL are each specified to be contained in the event G2L
0 × G0

xL
, so their

union is as well. Now assume X1 ∈ G2L
0 and X2 ∈ G0

xL
. We will show that either OL or PL

occurs. Let π1 be the continuous linear interpolation of the path taken by X1, and let π2 be

the continuous linear interpolation of the path taken by X2. Let α2 be the last point in R2

where π2 crosses the line {x · ` = 2L}. Let β1 be the first point where π1 crosses {x · ` = 2L},

and let β2 be the first point where π2 crosses {x · ` = 0}. Let z′
L be the point on the line

{x · ` = 2L} with (zL − z′
L) · `⊥ = 0 (thus, zL = z′

L + (xL − 2L)`). Note α2, β1, β2, and z′
L

need not be in Zd.
1

 ↑ Zerner actually shows P0(T<0 = ∞)P0(T>0 = ∞) ≤ lim infL→∞ P0,zL(G2L
0 × G0

xL
), and this is all that

is needed for his argument and ours. However, a brief and straightforward addition to Zerner’s argument
would show that the liminf is actually a limit and that equality holds, so we write it that way for cosmetic
reasons.
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To show that either OL or PL occurs, we will assume OL does not occur and prove that

PL must occur. If OL does not occur, then (X1
T≥2L

− zL) · `⊥ and X2
T≤0

· `⊥ are either both

positive or both negative, or else at least one is 0. If (X1
T≥2L

− zL) · `⊥ = 0, then PL occurs,

because XT≥2L
and zL have the same `⊥ component and both have ` component between 2L

and 2L + R. Similarly, if X2
T≤0

· `⊥ = 0, then PL occurs.

Now suppose (X1
T≥2L

− zL) · `⊥ and X2
T≤0

· `⊥ are both nonzero and have the same sign.

Without loss of generality, we may assume both are positive (otherwise, rename the directions

`⊥ and −`⊥). To show that PL occurs, we must show that for some 0 ≤ m ≤ T≥2L(X1) and

for some 0 ≤ n < T 2
0 , |X1

m − X2
n| ≤ 2R.

First, suppose that β2 ·`⊥ < 0; this situation is depicted in Figure  3.1 . Then X2
T≤0−1 ·` > 0

and X2
T≤0−1 · `⊥ < 0, but X2

T≤0
· ` < 0 and X2

T≤0
· `⊥ > 0. In one step, the walker that started

at zL crosses the line {x · ` = 0} and the line {x · `⊥ = 0}. It follows that X2
T≤0−1 must be

within a radius R of 0, and the event PL occurs. Similarly, if (β1 −zL) · `⊥ < 0, then X1
T≥2L−1

Figure 3.1. (X1
T≥2L

− zL) · `⊥ > 0 and X2
T≤0

· `⊥ > 0, but β2 · `⊥ < 0.

must be within a radius R of z′
L. Since z′

L is within distance R from zL, we conclude that

X1
T≥2L−1 is within a radius 2R of zL, and the event PL occurs.

We may therefore assume β2 · `⊥ and (β1 − z′
L) · `⊥ are both positive. This situation is

depicted in Figure  3.2 . If α2 · `⊥ > β1 · `⊥, then π2 must cross the line {x · `⊥ = β1 · `⊥} at
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Figure 3.2. Two different ways to have β2 · `⊥, (β1 − z′
L) · `⊥ > 0. The upper

path from zL shows the situation α2 · `⊥ > β1 · `⊥, while the lower path from
zL shows α2 · `⊥ < β1 · `⊥.

some point y between β1 and β1 +(xL −2L)`. This crossing point is a distance no more than
R
2 from X2

n for some 0 ≤ n < T≤0(X2). Its distance from β1 is no more than R, and β1 is no

more than R
2 units of distance away from some X1

m for some 0 ≤ m ≤ T≥2L(X1). Thus, PL

occurs.

Finally, assume α2 · `⊥ < β1 · `⊥. Then the path taken by π1 from 0 to β1 must intersect

the path taken by π2 from α2 to β2, since they are paths connecting different pairs of opposite

corners of the quadrilateral (0, β2, β1, α2). The point of intersection is no more than R
2 units

of distance away from X1
m for some 0 ≤ m ≤ T≥2L(X1) and no more than R

2 away from X2
n

for some 0 ≤ n < T≤0(X2). Thus, PL occurs. This finishes the justification of ( 3.4 ), which

together with ( 3.3 ) yields

lim
L→∞

P0,zL(OL ∪ PL) = P0(T<0 = ∞)P0(T>0 = ∞). (3.5)

We are now interested in the event OL \PL. Because this event does not involve the walks

intersecting (and thus “sharing” part of the environment), its probability is the same as the

probabilities of an analogous event where the two walks are run independently in different
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environments. And it is therefore bounded above by the probability of a similar event where

two walks are run independently in different environments but are allowed to intersect paths.

To formalize this idea, let G2L,+
0 be the subset of G2L

0 on which XT≥2L
· `⊥ > zL. Let G0,+

xL
be

the subset of G0
xL

on which XT≤0 · `⊥ > 0. Define G2L,−
0 and G0,−

xL
analogously. And define

ΠL := {(0 = X0, X1, . . . , XT≥2L
) : X ∈ G2L

0 },

ΠL,+ := {(0 = X0, X1, . . . , XT≥2L
) : X ∈ G2L,+

0 },

ΠL,− := {(0 = X0, X1, . . . , XT≥2L
) : X ∈ G2L,−

0 }.

We will abuse notation by using π to denote both a path in one of these sets and the set of

vertices in that path. Then

P0,zL(OL \ IL) =
∑

π∈ΠL,+

P0(X takes π)PzL(G0,−
xL

, T≤0 < Tπ)

+
∑

π∈ΠL,−

P0(X takes π)PzL(G0,+
xL

, T≤0 < Tπ)

≤
∑

π∈ΠL,+

P0(X takes π)PzL(G0,−
xL

)

+
∑

π∈ΠL,−

P0(X takes π)PzL(G0,+
xL

)

= P0(G2L,+
0 )PzL(G0,−

xL
) + P0(G2L,−

0 )PzL(G0,+
xL

)

≤ 1
2P

0(G2L
0 )PzL(G0

xL
).

= 1
2P

0(G2L
0 )P0(G−xL

0 ).

−→
L→∞

1
2P

0(T<0 = ∞)P0(T>0 = ∞),

The last inequality comes from the median property of zL, the last equality comes from

translation invariance, and the limit comes from ( 3.2 ).

Hence, due to ( 3.5 ),

1
2P

0(T<0 = ∞)P0(T>0 = ∞) ≤ lim inf
L→∞

P0,zL(PL).
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Therefore, to prove ( 3.1 ), it suffices to show

lim
L→∞

P0,zL(PL \ IL) = 0. (3.6)

and

lim
L→∞

P0,zL(IL) = 0. (3.7)

First, assume that

P0,zL(P ′
L \ IL) ≥ 1

2P
0,zL(PL \ IL), (3.8)

where P ′
L ⊂ PL is the event X1 ∈ G2L

0 , X2 ∈ G0
xL

, and |X1
m − X2

n| ≤ 2R for some 0 ≤ m ≤

T≥2L(X1), 0 ≤ n < T≤0(X2) with Xm · ` ≤ L.

Now for a given path π, define the stopping time

T ′
π,L := inf

{
n ≥ 0 : for some x ∈ π with x · ` ≤ L, there is a possible

path of length M or less from Xn to x

}
.

Notice that P ′
L implies that T ′

π,L(X2) ≤ T≤0(X2) for π = (X1
n)T≥2L

n=0 . This is because if

|X1
m − X2

n| ≤ 2R, then there is a possible path of length no more than M from X2
n to X1

m.

Therefore,

P0,zL(P ′
L \ IL) ≤

∑
π∈Π

P0,zL(X1 takes π)P0,zL(T ′
π,L(X2) ≤ T≤0(X2) < Tπ(X2) ∧ T>xL

(X2))

=
∑
π∈Π

P0(X takes π)PzL(T ′
π,L ≤ T≤0 < Tπ)

≤
∑
π∈Π

P0(X takes π)PzL(T ′
π,L < ∞). (3.9)

The equality comes from independence of sites.

We next define another event for (X1, X2) that involves the walks intersecting, but is

not contained in the strip traversal event. Let the meeting event ML be the event that

X1 ∈ G2L
0 , and X2 intersects with the path (X1

n)T≥2L

n=0 at a point y with y · ` ≤ L + RM .

Note that unlike the event IL, our event ML does not require that X2 complete the event

G0
xL

, nor does it require that the intersection occur at some X2
n with n ≤ T≤0(X2). However,
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unlike IL, ML imposes the restriction that the intersection must occur on or near the half

of the strip {0 ≤ x · ` ≤ 2L} that is closer to 0.

Suppose X is such that T ′
π,L < ∞ for a path π ∈ Π. Then there is a possible path

γ = (y0 = XT ′
π,L

, y1, y2, . . . , yk) with k < M , yk ∈ π, and yk · ` ≤ L. This path does

not include any vertices in the path (X0, X1, . . . , XT ′
π,L−1), because if such a vertex were

included, there would be a shorter path from that vertex to yk, violating the infimum part

of the definition of T ′
π,L. It may include multiple vertices from π, but taking j = inf{0 ≤ i ≤

k : yi ∈ π}, we may consider the path γ′ = (y0 = XT ′
π,L

, y1, y2, . . . , yj) that intersects neither

(X0, X1, . . . , XT ′
π,L−1) nor π, except at the terminating vertex. Therefore, by independence

of sites,

PzL

(
(XT ′

π,L+1, XT ′
π,L+2, . . . , XT ′

π,L+j) = γ′ X0, X1, . . . , XT ′
π,L

)
= Py0(X takes γ′)

≥ κ, (3.10)

where κ > 0 is the minimum annealed probability of any possible path of length less than

M . A minimum exists because, up to translation invariance, there are only finitely many

possible paths of a given length, and it is positive because by definition, all possible paths

have positive annealed probability. Now yj is of a distance at most R(k−j) ≤ Rk < RM from

yk, and therefore yj · ` ≤ L + RM . If, therefore, X1 takes π for some π ∈ Π, T ′
π,L(X2) < ∞,

and (X2
T ′

π,L+1, X2
T ′

π,L+2, . . . , X2
T ′

π,L+j) = γ′, then (X1, X2) ∈ ML. Thus, since ( 3.10 ) is true

whenever T ′
π,L < ∞, we have

PzL

(
Tπ∩{x·`<L+RM} < ∞ T ′

π,L < ∞
)

≥ κ.

This gives us

P0,zL(ML) ≥
∑
π∈Π

P0(X takes π)PzL(T ′
π,L < ∞)κ

( 3.9 )
≥ P0,zL(P ′

L)κ
( 3.8 )
≥ 1

2κP0,zL(PL), (3.11)
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We will now show that P0,zL(ML) vanishes. Zerner shows in [  31 ] that IL has vanishing

probability. The argument also works for our event ML. We summarize it here, applying

it to ML. Fix ε > 0, and suppose the intersection occurs at a point y. Either P y
ω(A`) < ε

or P y
ω(A`) ≥ ε. In the former case, a walk from 0 passes through y but still has T≥L < T<0.

Zerner shows in [  31 ] that the probability of this event has limsup bounded above by ε. In the

latter case, a walk started from zL travels a great distance in direction −` (here, a distance

at least L − RM) and still reaches a point where the probability of A` is at least ε. The

chance of traveling such a distance in direction −` but still having X2 ∈ A` approaches 0 as

L → ∞. On the other hand, if X2 ∈ A−`, then P Xn
ω (A`) must approach 0, being a bounded

martingale, and so the probability that it is still above ε after L−RM
R

units of time (long

enough to travel distance L − RM) approaches 0 as L → ∞. One may then take ε to 0.

Hence we may conclude that

lim
L→∞

P0,zL(ML) = 0.

Since ( 3.11 ) is true whenever ( 3.8 ) is true, we may conclude that

lim
L→∞

P0,zL(ML)1( 3.8 ) holds = 0.

By a nearly symmetric argument, 

2
 

lim
L→∞

P0,zL(ML)1( 3.8 ) does not hold = 0.

It follows that limL→∞ P0,zL(PL) = 0, which is (  3.6 ). To get ( 3.7 ), note that the subset

of IL where an intersection occurs to the left of the line {x · ` = L + RM} is actually

contained in ML, and therefore its probability vanishes with that of ML. The subset where

an intersection occurs to the right of {x · ` = L + RM} vanishes by a nearly symmetric

consideration.
2

 ↑ It is not perfectly symmetric because of the possible difference between xL and 2L, but the logic is
unchanged.
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3.2 Directional transience

Our next goal is to extend [  15 , Theorem 1] to bounded jumps, proving Theorem  2.2.1 ,

which we recall here.

Theorem (Theorem  2.2.1 ). Let P0
G be the measure of a RWDE with bounded jumps on Zd.

Let ∆ = E0[X1] be the annealed drift, and let ` ∈ Sd−1. Then P0
G(A`) = 1 if and only if

` · ∆ > 0; otherwise, P0
G(A`) = 0.

As we’ve discussed, the first part (regarding nonzero annealed drift) was proven for

general RWDE on Zd with bounded jumps in [  22 ]. However, we outline the argument in

one dimension here, showing that if κ1 6= 0, then the walk is almost surely transient in

the direction of κ1. This, combined with our argument for recurrence in the zero-drift case

(which uses a graph similar to the one used in [  22 ]), should give the reader a good idea of

how the directional transience result is proven. We also include the summary in order to

emphasize the reason why κ1 plays a role in characterizing ballisticity as well as directional

transience. The finite graphs GM used in the transience proof are closely related to a one-

sided infinite “limiting graph” G+ used in the ballisticity proofs, and comparisons between

GM and G+ can be used to prove a crucial lemma about G+. Including the argument for

transience now allows this connection to be seen. Finally, we include it because the ideas in

the proof of Claim  3.2.1.1 are used repeatedly in Chapter  4 , and this is a natural place to

present the thorough version of the argument for later reference.

Theorem 3.2.1.

If κ1 > 0, then limn→∞ Xn = ∞, P0
G–a.s..

Proof (outline). This follows from [  22 , Corollary 1], but we outline the proof for the one-

dimensional case. We are to show that limn→∞
Xn

n
= ∞, P0

G–a.s. The steps are as follows:

(a) Show that P0
G(T≥M < T̃≤0) is bounded away from 0 as M approaches ∞. (This is shown

in [ 22 , Theorem 1]).

(b) Taking limits, conclude that P0
G(T̃≤0 = ∞) > 0, implying the walk is transient to the

right with positive probability.
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(c) Use the 0-1 law [  16 , Theorem 11] to conclude that if the probability of transience to the

right is positive, it is 1.

We outline the proof of (a) for convenient reference. For M > R + L, we consider a

weighted directed graph GM with vertex set [0, M ]. Each vertex in [1, M − 1] has the same

edges with the same weights as those on G, except that edges that would terminate at points

less than zero are simply edges to the point 0, and edges that would terminate at points

greater than M are simply edges to the point M . If this would result in multi-edges, each

multi-edge is replaced with a single edge whose weight is the sum of the weights in the multi-

edge; however, we leave the multi-edges in our illustrations in order to show more clearly

where this occurs. Based on the edges and weights we’ve described so far, zero divergence

already holds at points from R + 1 to M − L − 1, but points to the left of R and to the right

of M − L are “missing” incoming weights from vertices to the left of 0 and to the right of

M , respectively. Therefore, to each vertex 1 ≤ j ≤ R, we add an edge from 0 with weight∑R
i=j αi (depicted in Figure  3.3 as a multi-edge) in order to achieve zero divergence at j.

Likewise, to each edge M − L ≤ j ≤ M , we add an edge from M with weight ∑M−j
i=M−L αi−M .

Based on these weights, the site 0 has incoming weight d− and outgoing weight d+, and the

site M has incoming weight d+ and outgoing weight d−. To adjust for this, we add a special

edge from M to 0 with weight d+ − d− = κ1.

Figure 3.3. The graph GM .

Now the graph satisfies the zero-divergence property. This is the graph GM , pictured in

Figure  3.3 . For now, the usefulness of GM comes from the following claim, which we prove

in its entirety because the ideas in its proof will be referenced several times throughout this

paper.
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Claim 3.2.1.1.

Px
G(T≥M < T≤0) = Px

GM
(TM < T0), 0 < x < M. (3.12)

To prove this, consider for each environment ω on Z a modified environment ω′, where

transition probabilities between sites in [1, M − 1] are the same as in ω, but for each i ∈

[M − R, M − 1], ω′(i, M) = ∑
j≥M ω(i, j), and for each i ∈ [1, R], ω′(i, 0) = ∑

j≤0 ω(i, j).

Then by construction, a walk drawn according to P x
ω′ for any x strictly between 0 and M

and stopped when it hits 0 or M follows the same law (except possibly for the terminating

site) as the law of a walk drawn according to P x
ω and stopped when it reaches (−∞, 0] or

[M, ∞). In particular,

P x
ω (T≥M < T≤0) = P x

ω′(TM < T0), 0 < x < M.

On the other hand, by the amalgamation property of Dirichlet random vectors, we also see

that for every y ∈ [1, M − 1], the law of (ω′)x under PG is a Dirichlet distribution, and in

fact is the same as the law of ωx under PGM
. Hence, for each 0 < x < M , we have

Px
G(T≥M < T≤0) = EG [P x

ω (T≥M < T≤0)]

= EG [P x
ω′(TM < T0)]

= EGM
[P x

ω (TM < T0)]

= Px
GM

(TM < T0).

This proves the claim.

From Corollary  1.4.3 (2), we can get P0
GM

(TM < T̃0) ≥ κ1
d+ . We can use Claim  3.2.1.1 to

show that P0
GM

(TM < T̃0) ≤ PR
G (T≥M < T≤0). Putting the two together, we get

PR
G (T≥M < T≤0) ≥ κ1

d+
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for all M . By independence of sites, we then have

P0
G(T≥M < T̃≤0) ≥ PG(X1 = R)PR

G (T≥M < T≤0)

≥ PG(X1 = R) κ1

d+ .

This is the bound we needed.

3.3 Directional recurrence

To complete the proof of Theorem  2.2.1 , all that remains is to prove the following.

Theorem (Theorem  2.2.2 ). Let P0
G be the measure of a RWDE with bounded jumps on Zd.

Let ∆ = 0, and let ` ∈ Sd−1. Then P0
G(A`) = 0.

To make our arguments easier to follow, we will first consider directions ` with rational

slopes. Let Sd−1
r :=

{
u

|u| : u ∈ Zd \ {0}
}

⊂ Sd−1 be the set of vectors in the unit sphere

Sd−1 that have all rational slopes; we will prove Theorem  2.2.2 for vectors in this set first.

However, because we cannot rely on the truth of Conjecture  2.2.3 , proving Theorem  2.2.2 

for all directions ` ∈ Sd−1
r is not sufficient to prove it for all directions ` ∈ Sd−1, even though

Sd−1
r is dense in Sd−1. For ` ∈ Sd−1 \ Sd−1

r , we must rule out the possibility that a walk

could with positive probability be transient in direction ` while recurrent in all directions

not parallel to `.

Once we prove Theorem  2.2.2 for rational slopes, we do not know of a way to directly

generalize to arbitrary directions. The generalization will require going through the same

argument more carefully, choosing directions v ∈ Sd−1
r sufficiently close to ` to satisfy certain

properties. However, to make our arguments easier to follow, we first prove the theorem for

directions ` ∈ Sd−1
r , and then afterward describe the differences necessary for dealing with

directions ` ∈ Sd−1\Sd−1
r . Because we are discussing multiple directions, we must replace our

simplified notation T�a for hitting times of half-spaces with the slightly more cumbersome

T `
�a. In order to facilitate comparisons later, we use this notation even for the simplified

version of the proof that assumes ` ∈ Sd−1
r and only discusses one direction.
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Moreover, for ` ∈ Sd−1 we will also need to define the “lateral hitting times”

H`
≥a := inf{n ≥ 0 : Xn · `⊥ ≥ a for some `⊥ ⊥ `}.

We are now ready to prove our Theorem  2.2.2 for directions with rational slopes.

3.3.1 Rational slopes

Theorem 3.3.1. Let P0
G be the measure of a RWDE with bounded jumps on Zd. Let ∆ = 0,

and let ` ∈ Sd−1
r . Then P0

G(A`) = 0.

Proof of Theorem  3.3.1 . Let ` ∈ Sd−1
r . Assume for a contradiction that P0

G(A−`) > 0. Then,

as in [ 30 , page 765], we have P0
G(T `

>0 = ∞) > 0, from which it easily follows that α :=

P0
G(T̃ `

≥0 = ∞) > 0.

Lemma 4 from [ 23 ] is stated for nearest-neighbor RWRE, but its proof can easily be

modified to work for RWRE satisfying our assumptions. It says it is P0–a.s. impossible to

visit a slab of finite width infinitely often without visiting both of its neighboring half-spaces,

and it implies that on the event {T̃ `
≥0 = ∞}, it is also the case (up to a set of probability

zero) that T `
≤−L < T̃ `

≥0. Since it is always possible, with positive probability, for a walk to

hit the half-space {x · ` ≤ −L} and then return to {x · ` ≥ 0}, we have P0
G(T `

≤−L < T̃ `
≥0) > α

for all L ≥ 0. And on the event {T `
≤−L < T̃ `

≥0}, there is necessarily some a such that

T `
≤−L < T̃ `

≥0 ∧ H`
≥a. It therefore follows that for any L > 0, there exists K = K(L) > 0 such

that

P0
G(T `

≤−L < T̃ `
≥0 ∧ H`

≥ 1
2 K) > α. (3.13)

For L ≥ R, let K = K(L) be an increasing function satisfying (  3.13 ) for all L. Let u be

a constant multiple of ` such that u ∈ Zd. Then let (u, u2, . . . , ud) be an orthogonal basis

for Rd such that ui ∈ Zd for all i. Let N be large enough that N |ui| ≥ K for all i.

We will define a graph HN,L in nearly the same way as the GN,L defined by Tournier in

[ 22 ]. Consider the cylinder

CN,L := {x ∈ Zd : 0 ≤ x · ` ≤ L}/(NZu2, . . . , NZud).
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This is the slab SN,L := {0 ≤ x · ` ≤ L} ∩ Zd where vertices that differ by Nui for some

i ∈ {2, . . . , d} are identified. We note that [ 22 ] uses L|u| rather than L here. We use L for

reasons related to our plans for generalizing the proof to ` /∈ Sd−1
r .

Now define the graph HN,L with vertex set

VN,L := CN,L ∪ {M} ∪ {∂},

where M and ∂ are new vertices (in [  22 ], R and ∂ are used, but in this paper, R already has

a meaning), and edges of HN,L are of the following types:

1. edges induced by those of G inside CN,L;

2. If x ∈ CN,L corresponds to a vertex x′ ∈ SN,L, there is

(a) an edge from x to ∂ for each y ∈ N such that (x′ + y) · ` < 0,

(b) an edge from ∂ to x for each y ∈ −N such that (x′ + y) · ` < 0,

(c) an edge from x to M for each y ∈ N such that (x′ + y) · ` > L,

(d) an edge from M to x for each y ∈ −N such that (x′ + y) · ` > L,

3. A new “special” edge from M to ∂ and one from ∂ to M .

Weights of all edges but the last two are induced by the corresponding weights in G. Note

that several edges may share the same head and tail. If that is the case, identify such edges

into one edge whose weight is the sum of all of the original weights in order to create a

graph that is not a multigraph and fits our definitions (there is also a way to define RWDE

on a multigraph by keeping track of vertices visited and edges taken, and if we used such a

definition, the identification of multiple edges would not affect the distribution of the vertex

path). By construction, zero divergence holds at all vertices in CN,L. It remains to describe

the weights of the new edges connecting ∂ and M (the paper [ 22 ] only defines an edge from

M to ∂). The paper [  22 ] shows that the quantity

(∑
weights of edges in 2(c)

)
−
(∑

weights of edges in 2(a)
)
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is a multiple of the annealed drift. Thus, because of our assumption the annealed drift is zero,

the two sums are equal. Note that by the shift-invariant structure of the graph G, the sum

on the left is also the weight exiting ∂ by edges in 2(b). Similarly, the sum on the right is also

the weight exiting M by edges in 2(d). Hence the total weights of edges in 2(a), 2(b), 2(c),

and 2(d) are all the same. Because weights in 2(a) and 2(b) are the same, zero divergence

holds at ∂, and because 2(c) and 2(d) are the same, zero divergence holds at M . In order

to preserve zero divergence, we give both of the special edges the same weight W , which we

take to be the value of each of the two sums above. It follows from well known properties of

Dirichlet random variables that when the walk is started at either of the endpoints, its first

step is along the special edge to the other endpoint with annealed probability 1
2 . Figure  3.4 

shows an example of the graph HN,L. (Because Figure  3.4 is also intended to be used for

the argument for Theorem  2.2.2 , it uses v rather than ` in its labeling. For the purpose of

the current argument, simply take v = `.)

Figure 3.4. Graph HN,L. Here N = {(0, 1), (1, −1), (−2, 0)}, and v = (2, 1).
Boundary conditions in direction perpendicular to v are periodic; vertices la-
beled with the same letters are identified. Arrows to and from the main part
of the graph on the left are understood to originate from or terminate at ∂,
and similarly with M on the right side.
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Define the stopping time τ = inf{n ∈ N0 : Xn = 0, Xn−1 = M}. Note that {T̃∂ = τ} =

{XT̃∂−1 = M} is the event that the first return to zero is by the special edge.

We note, by Lemma  1.4.3 ,

P∂
HN,L

(T̃∂ = τ) = 1
2

On the other hand, we also have P∂
HN,L

(X1 = M) = 1
2 . Now by considering the possibility

that the first step from ∂ is to M (by the special edge) and the possibility that the first step

from ∂ is not to M , we get

P∂
HN,L

(T̃∂ = τ) ≤ P∂
HN,L

(X1 = M)PM
HN,L

(T∂ = τ) + P∂
HN,L

(X1 6= M, TM < T̃∂),

which can be rewritten as

1
2 ≤ 1

2P
M
HN,L

(T̃∂ = τ) + P∂
HN,L

(X1 6= M, TM < T̃∂), (3.14)

We claim that the term P∂
HN,L

(X1 6= M, TM < T̃∂) approaches 0 as L and K increase.

Let B = B(L, K) be a box of radius L∧K
3 around 0, and for x ∈ CN,L, let x + B be the set

of vertices in CN,L that can be written as x + y for some y ∈ B. Note that for x ∈ CN,L,

the dot product with ` is well defined, since vertices in SN,L that are identified to form CN,L

have the same dot product with `. Then for sufficiently large L,

P∂
HN,L

(X1 6= M, TM < T̃∂) =
∑

x∈CN,L,
0≤x·`≤R

P∂
HN,L

(X1 = x)Px
HN,L

(TM < T∂)

≤
∑

x∈CN,L,
0≤x·`≤R

P∂
HN,L

(X1 = x)Px
HN,L

(T(x+B)c < T∂)

≤
∑

x∈CN,L,
0≤x·`≤R

P∂
HN,L

(X1 = x)P0
G(TBc < T `

≤−R)

= P0
G(TBc < T `

≤−R) (3.15)

The first equality comes from the strong Markov property and independence of sites. The

first inequality holds as long as L is large enough that M /∈ x + B. To get the second
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inequality, note that a finite path from x that stays in x + B until the last step does not use

the periodic boundary conditions (provided L∧K
3 > R), and so it has the same probability

as a corresponding path in G. And for x ∈ CN,L with x · ` ≤ R, a walk from x on HN,L that

leaves x + B without hitting ∂ corresponds to a walk on G (which we may take to start at 0

by translation invariance) that leaves B without traveling x · ` or more units (of distance in

Rd) in direction −`. Since x · ` ≤ R for all x with P∂
HN,L

(X1 = x) > 0, the second inequality

follows. The final equality comes from pulling the second term out of the sum, which is then

equal to 1.

To prove our claim, we must show that (  3.15 ) goes to 0 as L increases (along with K).

Let ε > 0. By assumption, P0
G(A−`) > 0. By Theorem  2.1.1 for d = 2, or by the 0-1 law of

Bouchet for d ≥ 3 in [  14 ] (where, as Tourner points out in [  22 ], the proof works for bounded

jumps), this means P0
G(A−`) = 1. Thus, P0

G(T `
≤−R < ∞) = 1. Now take an increasing

sequence (Qr) of finite sets converging to Zd. Then the event {T `
≤−R < ∞} is the limit as r

increases (i.e., the union over all r) of the events {T `
≤−R < TQc

r
}. Let Q = Q(ε) be one such

Qr large enough that P0
G(TQc < T `

≤−R) < ε. Note that although Q depends on ε, it does not

depend on L. Thus, for large enough L, B contains Q, so that

{TBc ≤ T `
≤−R} ⊂ {TQc ≤ T `

≤−R}. (3.16)

It follows that, for large enough L,

P0
G(TBc ≤ T `

≤−R) ≤ P0
G(TQc ≤ T `

≤−R) < ε.

Since this can be true for arbitrary ε > 0, the right side of ( 3.15 ) goes to 0, and therefore so

does P∂
HN,L

(X1 6= M, TM < T̃∂).

Next, we will show that PM
HN,L

(T∂ = τ) is bounded away from 1 as M increases. We have
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PM
HN,L

(T∂ 6= τ) ≥
∑

x∈CN,L,L−R≤x·`≤L

PM
HN,L

(X1 = x)Px
HN,L

(T∂ < T `
>x·`)

≥
∑

x∈CN,L,L−R≤x·`≤L

PM
HN,L

(X1 = x)P0
G(T `

≤−L < T̃ `
≥0 ∧ H`

≥ 1
2 K)

>
∑

x∈CN,L,L−R≤x·`≤L

PM
HN,L

(X1 = x)α

= 1
2α.

The first inequality comes from the strong Markov property and independence of sites. To

get the second inequality, note that the probability Px
HN,L

(T∂ < T>x·`) is greater than the

probability, starting from x, that a walk on HN,L reaches ∂ without ever traveling more than
N
3 units in any direction perpendicular to u. Since this event precludes the walk from using

the periodic boundary conditions, (and because weights to ∂ in HN,L are the same as the

weights from corresponding sites to the set {y : y · u < 0}) its probability is the same as

the probability that a walk in G travels more than x · ` units in direction −u without ever

traveling more than N
3 units in any perpendicular direction. Since x · u ≤ L, the second

inequality follows. The third inequality comes from (  3.13 ), and the equality comes from the

expectation of a beta random variable.

Now taking the limsup in ( 3.14 ) as M → ∞ yields the contradiction

1
2 ≤ 1

2

(
1 − 1

2α
)

<
1
2 .

3.3.2 Generalizing to directions in Sd−1 \ Sd−1
r

We now describe how to prove Theorem  3.3.1 for directions that do not necessarily have

rational slopes.

The graph constructed in [ 22 ] is used to analyze a direction ` with rational slopes, and

uses the rationality in a significant way. Rather than attempt to construct and analyze an
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analogous graph for an irrational direction ` ∈ Sd−1, we use a sequence of rational slopes

v ∈ Sd−1
r approaching `. The following lemma is simple, but important.

Lemma 3.3.2. Fix ` ∈ Sd−1, h > 0, and L′ > L > 0. For v close enough to `, any x ∈ Rd

with x · ` ≥ L′ and x · v ≤ L must necessarily have x · `⊥ > h for some `⊥ ⊥ `.

Proof. Choose a unit vector v close to ` and let `⊥ ∈ Sd−1 be the unit vector perpendicular

to ` such that v = a` −
√

1 − a2`⊥, where a = v · `. Then a ↗ 1 as v → `, and ` − v =

(1 − a)` +
√

1 − a2`⊥. By writing x · (` − v) in different ways, we get

(1 − a)x · ` +
√

1 − a2x · `⊥ = x · ` − x · v.

From this we get

√
1 − a2x · `⊥ = ax · ` − x · v

≥ aL′ − L.

For v sufficiently close to `, a is close enough to 1 that this gives us

√
1 − a2x · `⊥ ≥ 1

2(L′ − L)

and

x · `⊥ ≥ 1
2
√

1 − a2
(L′ − L).

Taking v close to ` makes a close to 1, which suffices to prove the lemma.

We now proceed with the proof, describing only the parts where it differs from the proof

of Theorem  3.3.1 .

Proof of Theorem  2.2.2 . The first challenge is to get the same bound as in (  3.13 ), but for

a direction v with rational slopes. We will show that for any L, there is a unit vector

v = v(L) ∈ Sd−1
r close enough to ` and a K = K(L) large enough that

P0
G(T v

≤−L < T̃ v
≥0 ∧ Hv

≥ 1
2 K) > α. (3.17)
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Fix L > 0, and choose any L′ > L. Let K ′ be such that

P0
G(T `

≤−L′ < T̃ `
≥0 ∧ H`

≥ 1
2 K′) > α.

(Such a K ′ exists by (  3.13 ).) Now on the event {T `
≤−L′ < T̃ `

≥0}, there is necessarily an

open neighborhood around ` such that for any v in the neighborhood, T `
≤−L′ < T̃ v

≥0. This is

because the walk only hits finitely many points before T≤−L′ , and each such point x (other

than 0) has x · ` < 0, so that for v close enough to `, x · v < 0. Hence

lim
v→`

P0
G(T `

≤−L′ < T̃ `
≥0 ∧ T̃ v

≥0 ∧ H`
≥ 1

2 K′) = P0
G(T `

≤−L′ < T̃ `
≥0 ∧ H`

≥ 1
2 K′).

In particular, for v close enough to `,

P0
G(T `

≤−L′ < T̃ `
≥0 ∧ T̃ v

≥0 ∧ H`
≥ 1

2 K′) > α. (3.18)

Now let v ∈ Sd−1 have rational slopes, satisfy (  3.18 ), and also be close enough to ` that if

x · ` ≥ L′ and x · v ≤ L, then x · `⊥ ≥ K ′ for some `⊥ ⊥ ` (this is possible by Lemma  3.3.2 ).

Choose K large enough that any y with y · v⊥ ≥ K
2 for any v⊥ ⊥ v is necessarily outside the

set

Z :=
{

−L′ − R ≤ x · ` ≤ 0, x · v ≤ 0, x · `⊥ ≤ K ′

2 for all `⊥ ⊥ `

}
.

See Figure  3.5 . Now on the event {T `
≤−L′ < T̃ `

≥0 ∧ T̃ v
≥0 ∧ H`

≥ 1
2 K′}, it is necessarily the case

that Xn ∈ Z for 0 ≤ n ≤ T `
≤−L′ . Furthermore, if z := XT `

≤−L′
, then since z · ` ≤ −L′ and

z · `⊥ ≤ K′

2 for all `⊥ ⊥ `, the choice of v implies that z · v ≤ −L. Thus Xn ∈ Z for

0 ≤ n ≤ T v
≤−L, and therefore T v

≤−L < T̃ v
≥0 ∧ Hv

≥ 1
2 K

. Hence (using (  3.18 )),

P0
G(T v

≤−L < T̃ v
≥0 ∧ Hv

≥ 1
2 K) ≥ P0

G(T `
≤−L′ < T̃ `

≥0 ∧ T̃ v
≥0 ∧ H`

≥ 1
2 K′) > α.

This is ( 3.17 ).
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Figure 3.5. In order for the walk to cross the line {x ·` = −L′} before leaving
the set Z, it must exit the lighter shaded box through the line {x · v = −L}.

For L ≥ 0, let v = v(L) and K = K(L) be defined as in ( 3.17 ), with K increasing in L.

As before, let u be a constant multiple of v such that u ∈ Zd and let (u, u2, . . . , ud) be an

orthogonal basis for Rd such that ui ∈ Zd for all i, and define N as before as well.

We define the graph HN,L as described before, using the rational direction v, rather than

the direction `, to define it. Thus,

CN,L := {x ∈ Zd : 0 ≤ x · v ≤ L}/(NZu2, . . . , NZud),

We note here our reason for using L as the length of the cylinder, rather than L|u| as in

[ 22 ]. The choice of v depends on the length of the cylinder, but |u| depends on v, and may

be unbounded as v → `.
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As before, arguments based on the graph HN,L give us

1
2 ≤ 1

2P
M
HN,L

(T̃∂ = τ) + P∂
HN,L

(X1 6= M, TM < T̃∂), (3.19)

and we must show that the term P∂
HN,L

(X1 6= M, TM < T̃∂) approaches 0 as L and K increase.

Defining B = B(L, K) as before, our previous arguments give us

P∂
HN,L

(X1 6= M, TM < T̃∂) = P0
G(TBc < T v

≤−R) (3.20)

Comparing with (  3.15 ), the only difference is that the right hand side considers the event

{TBc < T v
≤−R}, rather than {TBc < T `

≤−R}.

We now must show that (  3.20 ) goes to 0 as L increases (along with N , and with u

approaching `). Let ε > 0 and choose R′ > R. Just as P0
G(T `

≤−R < ∞) = 1, we have

P0
G(T `

≤−R′ < ∞) = 1. Choose Q = Q(ε) so that P0
G(TQc ≤ T `

≤−R′) < ε. For large enough L,

as in ( 3.16 ), we have

{TBc ≤ T v
≤−R} ⊂ {TQc ≤ T v

≤−R}. (3.21)

Now by Lemma  3.3.2 , for v close enough to ` (i.e., for large enough L), if x · ` ≤ −R′ and

x · v ≥ −R, then x is not in Q, so that the event {T `
≤−R′ ≤ TQc ≤ T v

≤−R} is impossible, and

therefore

{TQc ≤ T v
≤−R} ⊂ {TQc ≤ T `

≤−R′}. (3.22)

It follows from ( 3.21 ), ( 3.22 ), and the choice of Q that for large enough L,

P0
G(TBc ≤ T v

≤−R) ≤ P0
G(TQc ≤ T `

≤−R′) < ε.

Since this can be true for arbitrary epsilon, P0
G(TBc ≤ T v

≤−R) goes to 0, and therefore so does

P∂
HN,L

(X1 6= M, TM < T̃∂).
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Next, we will must show that PM
HN,L

(T∂ = τ) is bounded away from 1 as M increases.

Using ( 3.17 ) in place of ( 3.13 ), we are able to argue as before to get

PM
HN,L

(T∂ 6= τ) ≥ 1
2α.

Now taking the limsup in ( 3.19 ) as M → ∞ yields the contradiction

1
2 ≤ 1

2

(
1 − 1

2α
)

<
1
2 .

We now have enough to prove Theorem  2.2.1 , which we recall here.

Theorem (Theorem  2.2.1 ). Let P0
G be the measure of a RWDE with bounded jumps on Zd.

Let ∆ = E0[X1] be the annealed drift, and let ` ∈ Sd−1. Then P0
G(A`) = 1 if and only if

` · ∆ > 0; otherwise, P0
G(A`) = 0.

Proof of Theorem  2.2.1 . First, suppose M6= 0. Then if `· M> 0, the arguments in [ 22 ], which

work for bounded jumps, show that P0(A`) > 0. For d ≥ 3, the proof of the 0-1 law in [  14 ]

can easily be modified to work for bounded jumps, as a remark in [ 22 ] points out. If d = 1,

the 0-1 law of [  16 ] applies, and if d = 2, Theorem  2.1.1 applies. Thus, we get P0(A`) = 1.

If `· M< 0, then −`· M> 0, so we get P0(A−`) = 1, and therefore P0(A`) = 0. Finally, if

`· M= 0, then the results of [ 12 ] (which can easily be made to work for bounded jumps, as

noted in the aforementioned remark in [  22 ]) imply that P0(A`) = 0. This handles the case

M6= 0. On the other hand, if M= 0, then the conclusion is that of Theorem  2.2.2 .

3.4 Further remarks

We have generalized to RWDE with bounded jumps the complete characterization of

P0
G(A`) that was known for nearest-neighbor RWDE.

However, there is one nagging difficulty in the zero-drift case that must be dealt with

before we may claim absolute victory over the issue of directional transience for RWDE.

Because there are uncountably many directions, proving that the probability of transience
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in any given direction is zero does not automatically mean that it is impossible for the walk

to be directionally transient. For example, however unlikely it seems, one could imagine the

possibility that a walk is almost surely transient in some direction ` ∈ Sd−1 and recurrent

in all directions `′ 6= ±`, but that the direction ` of transience is random with a continuous

distribution, so that for any fixed `, P0
G(A`) = 0. This pathological behavior has yet to be

ruled out, even for the nearest-neighbor Dirichlet case. To resolve this difficulty we would

need to prove, at least for Dirichlet environments, a stronger version of Conjecture  2.2.3 .

For ` ∈ Sd−1, let A0
` be the event that limn→∞ Xn · ` = ∞, but there is no neighborhood

U ∈ Sd−1 containing ` such that for all `′ ∈ U , limn→∞ Xn · `′ = ∞. Using this notation,

we can restate Conjecture  2.2.3 (which we have proven in the Dirichlet bounded jump case)

very simply.

Conjecture (Conjecture  2.2.3 ). Let P0 be the law of an i.i.d. RWRE on Zd. Then for all

` ∈ Sd−1, P0(A0
`) = 0.

The following strengthened version of the conjecture would rule out the pathological

behavior we have described above.

Conjecture 3.4.1. Let P0 be the law of an i.i.d. RWRE on Zd. Then P0 (⋃`∈Sd−1 A0
`) = 0.
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4. BALLISTICITY IN ONE DIMENSION

In this chapter, we characterize ballisticity of RWDE on Z in terms of the Dirichlet param-

eters. First we prove Lemma  2.3.2 , which gives an abstract characterization of ballisticity

for all directionally transient i.i.d. RWRE on Z with bounded jumps. We then study the

parameter κ0, which characterizes finite traps, and complete the proof of Theorem  2.3.3 ,

which applies Tournier’s lemma to our model. We prove Theorem  2.3.4 in two parts, each

of which is stated as its own proposition. Finally, we prove Theorem  2.3.5 , characterizing

finiteness of moments of the quenched Green function E0
ω[N0], and combine it with Lemma

 2.3.2 to prove Theorem  2.3.6 .

Some of our proofs will require focusing on the environment on a proper subset of the

entire state space. For a subset S ⊆ Z, let ωS = (ωx)x∈S. In the case where S is a half-infinite

interval, we simplify our notation by using ω≤x to denote ω(−∞,x], and similarly with ω<x,

ω≥x, and ω>x.

4.1 Abstract ballisticity criteria

The main goal of this section is to prove Lemma  2.3.2 , which we recall here.

Lemma (Lemma  2.3.2 ). Let P be a probability measure on ΩZ satisfying ( C1 ), (  C2 ), (  C3 ),

and ( C4 ). Then v > 0 if and only if E0[N0] = E[E0
ω[N0]] < ∞.

Before we can characterize when the almost-sure limiting velocity v is positive, we must

first note that it exists. This has been shown under an ellipticity assumption too strong for

our model [  18 ], but it can be proven in the more general case with standard techniques. The

proof for the recurrent case (where, necessarily, v = 0) can be done by a slight modification

of arguments in [  34 ]. The proof for the directionally transient case follows [ 35 ] in defining

regeneration times (τk)∞
k=0. Let τ0 := 0, and for k ≥ 1, define

τk := min{n > τk−1 : Xn > Xj for all j < n, Xn ≤ Xj for all j > n}. (4.1)
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A crucial fact is that the sequences (Xτn − Xτn−1)∞
n=2 and (τn − τn−1)∞

n=2 are i.i.d. Using

these regeneration times, we are able to derive a formula for v, as well as a characterization

in terms of hitting times.

Proposition 4.1.1. Let P be a probability measure on ΩZ satisfying (  C1 ), ( C2 ), and (  C3 ).

Then the following hold:

1. There is a P0–almost sure limiting velocity

v := lim
n→∞

Xn

n
= E0[Xτ2 − Xτ1 ]

E[τ2 − τ1]
, (4.2)

where the numerator is always finite, and the fraction is understood to be 0 if the

denominator is infinite.

2. limx→∞
T≥x

x
= 1

v
, where 1

v
is understood to be ∞ if v = 0.

We outline some details of the argument for Proposition  4.1.1 in Chapter  5 . However,

the argument there is designed to apply also to accelerated, continuous-time random walks

as well as the discrete-time case. For that reason, we outline a somewhat simplified version

in Appendix  A that applies only to the discrete-time case.

For the rest of this section, assume P satisfies (  C1 ), ( C2 ), ( C3 ), and (  C4 ). We also use

regeneration times to derive the following lemma.

Lemma 4.1.2. For any a, c ∈ Z,

lim
x→∞

1
x

x∑
k=c

Nk = 1
v

, Pa–a.s.

If v = 0, then the limit is infinity.

Proof. Fix a. Recall that N
(−∞,x)
k is the amount of time the walk spends at k before T≥x.

Then for x > c,

T≥x

x
= 1

x

c−1∑
k=−∞

N
(−∞,x)
k + 1

x

x−1∑
k=c

N
(−∞,x)
k .
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The first term approaches 0 almost surely by assumption ( C4 ); hence, by Proposition  4.1.1 

(2),

lim
x→∞

1
x

x−1∑
k=c

N
(−∞,x)
k = 1

v
,Pa–a.s. (4.3)

We note that Nk and N
(−∞,x)
k differ only if the walk backtracks and visits k after reaching

[x, ∞). The sum, over all k < x, of these differences, is the total amount of time the walk

spends to the left of x after T≥x, and it is bounded above by the time from T≥x to the next

regeneration time (defined as in (  4.1 )), which is in turn bounded above by τJ(x) − τJ(x)−1,

where J(x) is the (random) j such that τj−1 ≤ T≥x < τj. Hence

1
x

x−1∑
k=c

N
(−∞,x)
k ≤ 1

x

x−1∑
k=c

Nk ≤ 1
x

x−1∑
k=c

N
(−∞,x)
k + 1

x
[τJ(x) − τJ(x)−1] (4.4)

Assume v = 0. Then by (  4.3 ), the left side of ( 4.4 ) approaches ∞ as x approaches ∞, and

therefore so does the middle. On the other hand, suppose v > 0. By (  4.2 ), E[τ2 − τ1] < ∞.

Then by the strong law of large numbers, τn

n
→ E[τ2 − τ1] < ∞, which implies that τn−τn−1

n

approaches 0. Since J(x) ≤ x + 1, the term 1
x
[τJ(x) − τJ(x)−1] approaches zero almost surely;

hence the Squeeze Theorem yields the desired result.

Suppose for now that R = 1. Then, for almost every ω, it is possible to define a bi-infinite

walk X = (Xn)n∈Z whose “right halves” are distributed like random walks under ω. From

each site a, run a walk according to the transition probabilities given by ω until it reaches

a + 1 (which occurs in finite time P a
ω–a.s. for P–a.e. ω). Concatenating all of these walks

then gives, up to a time shift  

1
 , a unique walk X = (Xn)n∈Z such that for any x ∈ Z, the

distribution of (Xk)∞
k=n, conditioned on Xn = x, is P x

ω . We may think of X as a walk from

−∞ to ∞ in the environment ω.

With a bit more work, we can define a similar bi-infinite walk in the general case R > 0.

Call the set of vertices ((k − 1)R, kR] the kth level of Z, and for x ∈ Z, let [[x]]R denote

the level containing x. Let ω be a given environment. From each point a ∈ Z, run a

walk according to the transition probabilities given by ω until it reaches the next level (i.e.,
1

 ↑ Choose, for example, the time shift where X0 = 0 and where Xn < 0 whenever n < 0.
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[[a + R]]R). This will happen P a
ω–a.s. for P–a.e. ω, by transience to the right and because

it is not possible to jump over a set of length R. Do this independently at every point for

every level. This gives what we’ll call a cascade: a set of (almost surely finite) walks indexed

by Z, where the walk indexed by a ∈ Z starts at a and ends upon reaching level [[a + R]]R.

Then for almost every cascade, concatenating these finite walks gives, for each point a, a

right-infinite walk Xa = (Xa
n)∞

n=0. Let Pω be the probability measure we have just described

on the space of cascades, and let P = P × Pω.

It is crucial to note that by the strong Markov property, the law of Xa under Pω is the

same as the law of X under P a
ω , which also implies that the law of Xa under P is the same

as the law of X under Pa.

For each x ∈ Z, let the “coalescence event” Cx be the event that all the walks from level

[[x − R]]R first hit level [[x]]R at x. On the event Cx, we say a coalescence occurs at x.

Lemma 4.1.3. Let E1 be the event that all the Xa are transient to the right, that all steps to

the left and right are bounded by L and R, respectively, and that infinitely many coalescences

occur to the left and to the right of 0. Then P(E1) = 1.

Proof. Boundedness of steps has probability 1 by assumption (  C3 ), and by assumption (  C4 )

all the walks Xa are transient to the right with probability 1. Now for k ≥ 2 and x ∈ Z, let

Cx,k be the event that all the walks from level [[x − R]]R first hit level [[x]]R at x without

ever having reached [[x−kR]]R. Choose k large enough that P(C0,k) > 0; then under the law

P, the events {CnkR,k}n∈Z are all independent and have equal, positive probability. Thus,

infinitely many of them will occur in both directions, P–a.s. By definition, Cx,k ⊂ Cx, and

so infinitely many of the events Cx occur in both directions, P–a.s.

Assume the environment and cascade are in the event E1. Let (xk)k∈Z be the locations of

coalescence events (with x0 the smallest non-negative x such that Cx occurs). By definition

of the xk, for every k and for every a to the left of [[xk]]R, T[[xk]]R(Xa) = Txk
(Xa) < ∞. Now

for j < k, it necessarily holds that xj is to the left of [[xk]]R, since there can be only one

xk per level. Define ν(j, k) := Txk
(Xxj ). By definition of the walks Xa, we have for j < k,

n ≥ 0,

X
xj

n+ν(j,k) = Xxk
n . (4.5)
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From this one can easily check that the ν(j, k) are additive; that is, for j < k < `, we have

ν(j, `) = ν(j, k) + ν(k, `).

Because all the Xxk agree with each other in the sense of (  4.5 ), we may define a single,

bi-infinite walk X = (Xn)n∈Z that agrees with all of the Xxk . For n ≥ 0, let Xn = Xx0
n .

For n < 0, choose j < 0 such that ν(j, 0) > |n|, and let Xn = X
xj

ν(j,0)−|n|. This definition is

independent of the choice of j, because if j < k < 0 with v(k, 0) > |n|, then by (  4.5 ) and the

additivity of the ν(j, k), we have

X
xj

ν(j,0)−|n| = X
xj

ν(j,k)+ν(k,0)−|n| = Xxk

ν(k,0)−|n|.

We may then define Nx := #{n ∈ Z : Xn = x} to be the amount of time the walk X spends

at x. Thus, Nx = lima→−∞ Nx(Xa).

Lemma 4.1.4. Both of the sequences (Xa)a∈Z and (Nx)x∈Z are stationary and ergodic.

Proof. For a given environment, the cascade that defines X may be generated by a (count-

able) family U = (Ua
n)n∈N,a∈Z of i.i.d. uniform random variables on [0, 1]. For such a collec-

tion, and an a ∈ Z, let Ua be the projection (Ua
n)n∈N. Given an environment ω, the finite

walk from a to level [[a + R]]R may be generated using the first several Ua
n . (One of the Ua

n

is used for each step. Once the walk terminates, the rest of the Ua
n are not needed, but one

does not know in advance how many will be needed.) Let ω̂x = (ωx, Ux), and ω̂ = (ω̂x)x∈Z.

Define the left shift θ̂ by θ̂(ω̂) := (ω̂x+1)x∈Z. Then (ω̂x)x∈Z is an i.i.d. sequence. We have

X0 = X0(ω̂) and Xa = X0(θ̂aω̂). Similarly, N0 = N0(ω̂) and Nx = N0(θ̂xω̂). So it suffices

to show that X0 and N0 are measurable. The measurability of X0 is obvious. For N0, let

Ak,`,B,r be the event that:

(a) for some x < 0, a coalescence event Cx,k (as defined in the proof of Lemma  4.1.3 ) occurs

with −B ≤ x − kR < x < 0, so that X agrees with Xx to the right of x;

(b) N
[−B,B]
0 (Xx) ≥ `, where N

[−B,B]
0 is the amount of time the walk spends at x before

exiting [−B, B]; and

(c) none of the walks from sites a ∈ [−B, B] uses more than r of the random variables Ua
r .

74



On this event, N0 is seen to be at least ` by looking only within [−B, B] and only at the

first r uniform random variables at each site. The event Ak,`,B,r is measurable, because it is

a measurable function of finitely many random variables, and the event {N0 > `} is, up to

a null set, simply the union over all r, then over all B, and then over all k of these events.

Thus, N0 is measurable.

We now give the connection between N0 and the limiting velocity v.

Lemma 4.1.5. v = 1
E[N0] . Consequently, the walk is ballistic if and only if E[N0] < ∞.

We note that a similar formula for the limiting speed in the ballistic case can be obtained

from [  36 , Theorem 6.12] for discrete-time RWRE on a strip, although the probabilistic in-

terpretation is less explicit, and an ellipticity assumption that does not hold for Dirichlet

RWRE is required.

Proof. By Lemma  4.1.4 and Birkhoff’s Ergodic theorem, for any c ∈ Z we have

lim
n→∞

1
n

n∑
k=c

Nk = E[N0], P–a.s.

Fix a ∈ Z. For large enough k, Nk(Xa) = Nk. We therefore get

lim
n→∞

1
n

n∑
k=c

Nk(Xa) = E[N0], P–a.s.

It follows that

lim
n→∞

1
n

n∑
k=c

Nk(X) = E[N0], Pa–a.s.

By Lemma  4.1.2 , we get v = 1
E[N0] .

Now we can see that the walk is ballistic if and only if E[N0] < ∞. In order to prove

Lemma  2.3.2 , we need to compare E[N0] with E0[N0].

Lemma 4.1.6. E[N0] ≤ E0[N0].

Proof. If E0[N0] = ∞, the inequality is trivial. Assume, therefore, that E0[N0] < ∞.
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Note that limx→∞ N0(X−x) = N0, P–a.s. Assuming we are able to interchange a limit

with an expectation, we have

E[N0] = E
[

lim
x→∞

N0(X−x)
]

= lim
x→∞

E
[
N0(X−x)

]
(4.6)

= lim
x→∞

E−x[N0(X)].

But each term E−x[N0(X)] = E[E−x
ω [N0]] is less than E0[N0] = E[E0

ω[N0]], since E−x
ω [N0] =

P −x
ω (T0 < ∞)E0

ω[N0]. Therefore, we may conclude E[N0] ≤ E0[N0], provided we can justify

( 4.6 ). To do this, we will apply the dominated convergence theorem, noting that N0(X−x) ≤

max1−R≤y≤0 N0(Xy) for all x > R. To see that the latter has finite expectation, we have

E
[

max
1−R≤y≤0

N0(Xy)
]

≤
0∑

y=1−R

E [N0(Xy)]

=
0∑

y=1−R

E [Eω[N0(Xy)]]

=
0∑

y=1−R

E [Ey
ω[N0]]

=
0∑

y=1−R

E
[
P y

ω(T0 < ∞)E0
ω[N0]

]

≤
0∑

y=1−R

E
[
E0

ω[N0]
]

= RE0[N0]

< ∞.

This allows us to justify our use of the dominated convergence theorem, completing the

proof.

We must now handle the case where E0[N0] = ∞. Our first step is to prove Lemma  2.3.1 .
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Lemma (Lemma  2.3.1 ). Let P be a probability measure on ΩZ satisfying ( C1 ), (  C2 ), (  C3 ),

and (  C4 ). Then v > 0 if and only if E0[T≥1] < ∞, where T≥1 is the first time the walk hits

[1, ∞).

Proof of Lemma  2.3.1 . Suppose E0[T≥1(X)] < ∞. Then for Pω–almost every cascade, we

have

T≥x(X0)
x

= 1
x

x∑
k=1

(T≥k(X0) − T≥k−1(X0))

≤ 1
x

x∑
k=1

T≥k(Xk−1), (2.7)

where the inequality comes from the fact that if X0 hits [k − 1, ∞) at k − 1, then it follows

the same path from there as Xk−1, while if it hits [k − 1, ∞) at a point to the right of k − 1,

then T≥k − T≥k−1 = 0. By Birkhoff’s Ergodic Theorem, the right side P–a.s. approaches

E[T≥1(X0)] = E0[T≥1]. Now we know from Proposition  4.1.1 that limn→∞
n

Xn
= 1

v
, so the

subsequence T≥x(X0)
X0

T≥x

must have the same limit. Since, for x > R, we have

T≥x(X0)
X0

T≥x
+ R

≤ T≥x(X0)
x

≤ T≥x(X0)
X0

T≥x
− R

,

we get 1
v

= limx→∞
T≥x(X0)

x
. Applying (  2.7 ), we get

1
v

= lim
n→∞

T≥x(X0)
x

≤ lim
n→∞

1
x

x∑
k=1

T≥k(Xk−1)

= E0[T≥1].

Therefore, if E0[T≥1] < ∞, then v > 0.

On the other hand, suppose E0[T≥1] = ∞. We will show that v = 0.

Claim 2.3.1.1. E [min1≤i≤R T≥R+1(Xi)] = ∞.

By assumptions (  C1 ), ( C2 ), and (  C3 ), we still have an m0 ≥ max(L, R) large enough

that every interval of length m0 is irreducible, P–a.s. Let A be the event that
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• For each i = 1, . . . , R − 1, the walk Xi hits R before leaving [R − m0 + 1, R].

• The walk XR first exits [R − m0 + 1, R] by hitting R − m0.

Then under P , the quenched probability of A is independent of ω≤R−m0 . Now, on the event

A, the minimum min1≤i≤R T≥R+1(Xi) is attained for i = R, since all the other walks take

time to get to R and then simply follow XR. Now on A, T≥R+1(XR) is greater than the

amount of time it takes for the walk XR to cross back to [R − m0 + 1, ∞) after first hitting

R − m0. The quenched expectation of this time, conditioned on A, is ER−m0
ω [T≥R−m0+1] by

the strong Markov property, and this depends only on ω≤R−m0 . Hence

E
[

min
1≤i≤R

T≥R+1(Xi)
]

≥ E
[
Pω(A)Eω[T≥R+1(XR)|A]

]
≥ E

[
Pω(A)ER−m0

ω [T≥R−m0+1(X)]
]

= P(A)ER−m0 [T≥R−m0+1(X)]

= P(A)E0[T≥1(X)]

= ∞.

This proves our claim. Now for x ≥ 1,

T≥xR+1(X0) ≥ T≥1(X0) +
x∑

k=1
min

1≤i≤R
T≥kR+1(X(k−1)R+i).

Dividing by xR and taking limits as x → ∞, we get limx→∞
T≥xR+1(X0)

xR
= ∞, P–a.s. by

Birkhoff’s ergodic theorem. Hence limx→∞
T≥xR+1(X)

xR+1 = ∞, P0–a.s. It follows that v = 0.

Now we can handle the case E0[N0] = ∞.

Proposition 4.1.7. If E0[N0] = ∞, then v = 0.

Proof. Suppose E0[N0] = ∞. We want to show that v = 0. By Lemma  2.3.1 , it suffices to

show that E0[T≥1] = ∞.

Now N0 is the total number of visits the walk makes to 0. These visits may be sorted

based on the farthest point to the right that the walk has hit in the past at the time of each
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visit. As in the proof of Lemma  4.1.2 , we use N
(−∞,x)
k to denote the amount of time the walk

spends at k before T≥x. Thus, for a walk started at 0 we get

N0 =
∞∑

x=0

(
N

(−∞,x+1)
0 − N

(−∞,x)
0

)
. (4.8)

Taking expectations on both sides, we get

E0[N0] =
∞∑

x=0
E
[
E0

ω

[
N

(−∞,x+1)
0 − N

(−∞,x)
0

]]
(4.9)

Now N
(−∞,x)
0 and N

(−∞,x+1)
0 can only differ if the walk hits [x, ∞) at x. Conditioned on this

event, the distribution under P 0
ω of the walk (Xn+T≥x

)∞
n=0 is the distribution of X under P x

ω .

Thus,

E0
ω

[
N

(−∞,x+1)
0 − N

(−∞,x)
0

]
= P 0

ω(XT≥x
= x)Ex

ω

[
N

(−∞,x+1)
0

]
. (4.10)

Combining ( 4.9 ) and ( 4.10 ), we get

E0[N0] =
∞∑

x=0
E
[
P 0

ω(XT≥x
= x)Ex

ω

[
N

(−∞,x+1)
0

]]
≤

∞∑
x=0

E
[
Ex

ω

[
N

(−∞,x+1)
0

]]
=

∞∑
x=0

Ex
[
N

(−∞,x+1)
0

]
.

By stationarity,

E0[N0] ≤
∞∑

x=0
E0
[
N

(−∞,1)
−x

]
= E0

[ ∞∑
x=0

N
(−∞,1)
−x

]

= E0[T≥1].

If E0[N0] = ∞, it follows that E0[T≥1], and by Lemma  2.3.1 , v = 0.

We can now complete the proof of our main lemma.
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Proof of Lemma  2.3.2 . Assume the walk is transient to the right. If E0[N0] = ∞, the con-

clusion is that of Proposition  4.1.7 . Otherwise, combining Lemmas  4.1.5 and  4.1.6 gives

v > 0. The left-transient case follows by symmetry. By the 0-1 law of [ 16 ], the remaining

case is where the walk is recurrent. This implies that N0 = ∞, P0–a.s., so that E0[N0] = ∞.

Because v = 0 in the recurrent case, the lemma is true.

4.2 Parameters governing ballisticity of RWDE

We now return to the Dirichlet model. In this section, we will characterize ballisticity

in terms of L, R, and the parameters (αi)R
i=−L. Lemma  2.3.2 tells us that the walk is

ballistic precisely when the quantity E0
G[N0] = EG[E0

ω[N0]] is finite. Although we cannot

usually calculate this expectation, we are able to characterize when it is finite in terms of

our Dirichlet parameters. We assume throughout this section that κ1 > 0, so that the walk

is transient to the right, and we examine the integrability of E0
ω[N0] under PG. In fact, we

generalize the question, examining when EG[E0
ω[N0]s] < ∞ for s > 0. The goal of this section

is to prove Theorems  2.3.3 ,  2.3.4 , and  2.3.5 . Theorem  2.3.6 then easily follows from Theorem

 2.3.5 and Lemma  2.3.2 .

4.2.1 Finite traps: The parameter κ0

In this subsection, we use Tournier’s lemma to study the existence of finite traps—finite

sets in which the walk is expected to spend an infinite amount of time before exiting under

the annealed measure.

We note that although Tournier’s lemma is stated for a finite graph, it can readily be

applied to walks that are killed upon exiting a finite subset of an infinite graph. In particular,

for any positive integer M , we can identify all vertices outside of [−M, M ] into one sink and

then argue as in Claim  3.2.1.1 or use Lemma  1.4.1 to see that the annealed expected number

of visits to 0 before exiting [−M, M ] is infinite if and only if there is a strongly connected

subset S of [−M, M ] containing 0 such that βS ≤ 1.
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This discussion motivates us to define, for our graph G, the quantity

κ0 := inf{βS : S ⊂ Z finite, strongly connected}. (4.11)

We now recall Theorem  2.3.3 . (Also recall that NS
0 is the amount of time the walk spends

at 0 before first exiting S.)

Theorem (Theorem  2.3.3 ). For s > 0, the following are equivalent:

(a) κ0 ≤ s.

(b) For all sufficiently large M , EG
[
E0

ω

[
N

[−M,0]
0

]s]
= ∞.

(c) For some M ≥ 0, EG
[
E0

ω

[
N

[−M,M ]
0

]s]
= ∞.

The proof is essentially a straightforward application of Tournier’s lemma as we have

just discussed; however, in order to handle the boundary case s = κ0, we first need to show

that the infimum in the definition of κ0 is actually a minimum. For example, in the case

κ0 = s = 1, showing that κ0 is a minimum means showing that there is actually a finite set

containing 0 that the walk is expected to get stuck in for an infinite amount of time. We

also give an algorithm to compute κ0.

Proposition 4.2.1. The infimum κ0 for the graph G is actually a minimum attained by a set

S ⊂ Z. Moreover, there is an integer M , which may be calculated from L, R, and the weight

assignments (αi)−L≤i≤R, such that the infimum is attained on a subset S with diameter at

most M . Hence κ0 can be calculated directly.

By translation invariance of the graph G, this implies that it is possible to compute κ0 by

looking at strongly connected subsets S with diameter no more than M and with leftmost

point 0.

Proof. We prove this in a series of claims. Recall that m0 ≥ max(L, R) is large enough that

every interval of length m0 is strongly connected.

Claim 4.2.1.1. κ0 ≤ d+ + d−.
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To prove this claim, it suffices to exhibit a finite, strongly connected set S ⊂ Z with

βS = d+ +d−. Let S = [0, m0 −1]. Then S is strongly connected. Now βS is the total weight

of edges from [0, m0 − 1] to other vertices. Since m ≥ max(L, R), it is easy to check that

this is exactly d+ + d−.

Claim 4.2.1.2. Let S ⊂ Z be a finite, strongly connected set of vertices. If x is a vertex to

the left or to the right of S, then βS∪{x} ≥ βS.

The quantity βS is the sum of all weights from vertices in S to vertices not in S. The

quantity βS∪{x} counts all same weights, except for weights of edges from S to x, and it also

counts weights of edges from x to vertices not in S ∪ {x}. If x is to the right of S, then the

total weight of edges from S to x cannot be more than c+, because c+ is the total weight

into x from all vertices to the left of x. On the other hand, c+ is also the total weight from

x to all vertices to the right of x, which are necessarily not in S ∪ {x}. Thus, the additional

weight from x to the right at least makes up for any weight into x from S. This proves the

claim in the case that x is to the right of A, and a similar argument proves the symmetric

case.

Remark 4.2.1. Note the importance of the assumption that x is to the left or right of S. If

x is in between some of the vertices of S, then it is certainly possible that βS∪{x} < βS. See

Examples  B.0.7 and  B.0.8 .

Claim 4.2.1.3. Let S be a finite, strongly connected subset of Z. Say that a vertex x ∈ S is

insulated if every site reachable in one step from x is also in S. Then if x < y are consecutive

non-insulated vertices in S with y − x > m0, it must be the case that all vertices between x

and y are in S.

Suppose there are two consecutive non-insulated vertices x, y ∈ S with y − x > m0.

Because m0 ≥ max(L, R), there must be other vertices from S strictly between x and y in

order for S to contain a path from x to y and y to x. By assumption, all such vertices are

insulated. Therefore, if there is an edge from a vertex in (x, y)∩S to another vertex in (x, y),

then the latter vertex must also be in S, and since it is strictly between x and y, it must also

be insulated. Applying this fact repeatedly, we see that any two vertices that communicate
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within (x, y) are either both insulated in S or both in Sc. Since the length of (x, y) is at

least m0, all sites in the interval communicate, and so all are in S.

Claim 4.2.1.4. The infimum κ0 is attained as a minimum; κ0 = βS0 for some S0. Moreover,

there is an algorithm to find it.

Let ε be the smallest weight any edge in G has, let N be an integer such that Nε ≥ d++d−,

and let M = (N − 1)(m0) (note this implies M ≥ m0). Then if S is a set of vertices with

diameter greater than M , it must either have at least N non-insulated vertices or have

consecutive non-insulated vertices that differ by more than m0. If there are at least N non-

insulated vertices, then there is an edge from each of these to at least one vertex outside of

S, which means βS ≥ Nε ≥ d+ +d− ≥ κ0, the last inequality coming from Claim  4.2.1.1 . On

the other hand, if two consecutive non-insulated vertices x < y differ by more than m0, then

[x, y] ⊆ S by Claim  4.2.1.3 . Now β[x,y] = d+ + d−, and vertices to the left and to the right of

[x, y] can only increase βS by Claim  4.2.1.2 . Thus, βS ≥ d+ + d− ≥ κ0. Therefore, one can

compute κ0 by looking only at βS for subsets S of Z with diameter no larger than M (note

that this includes [0, m0 − 1], which has β[0,m0−1] = d+ + d−). By shift invariance, one can in

fact look only at subsets of [0, M ]. Since there are only finitely many such sets, the infimum

in the definition of κ0 is actually a minimum. Since a suitable M can be easily calculated

from L, R, and the αi, finding such an M and then examining all strongly connected subsets

of Z with leftmost point 0 and diameter ≤ M gives us an algorithm to find κ0.

We are now able to prove Theorem  2.3.3 .

Proof of Theorem  2.3.3 .

(a) ⇒ (b) Suppose κ0 ≤ s. By Proposition  4.2.1 , this means there is a finite, strongly

connected set S of vertices in Z such that βS ≤ s. By translation invariance, we may assume

0 is the rightmost point of S. Let −M be large enough that S ⊆ [−M, 0]. By collapsing

all vertices not in [−M, 0] into a sink and then arguing as in Claim  3.2.1.1 , we may apply

Tournier’s lemma along with the amalgamation property to see that EG
[
E0

ω

[
N

[−M,0]
0

]s]
= ∞.

(b) ⇒ (c) Immediate, since N
[−M,0]
0 ≤ N

[−M,M ]
0 .
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(c) ⇒ (a) Suppose EG
[
E0

ω

[
N

[−M,M ]
0

]s]
= ∞. Again, collapsing all vertices not in

[−M, M ] into a single sink, we may apply Tournier’s lemma to see that there is a strongly

connected set S ⊆ [−M, M ] such that βS ≤ s. Hence κ0 ≤ s.

The method for finding κ0 given in the proof of Proposition  4.2.1 requires knowledge of

the αi, and the number of sets to examine grows exponentially with the reciprocal of the

smallest positive αi. We prove in Appendix  B that given only the set N (that is, given only

L, R, and the i for which αi > 0), κ0 can be expressed as a minimum of finitely many positive

integer combinations of the αi. If one has this formula, then one may easily compute κ0 for

any specific values of the αi.

Proposition 4.2.2. Given the set N , κ0 is an elementary function (a minimum of finitely

many positive integer combinations) of the αi.

 Jump to proof. 

Notice that Proposition  4.2.2 would have sufficed in place of Proposition  4.2.1 to show

that the infimum in the definition of κ0 is a minimum, which is enough to prove Theorem

 2.3.3 . On the one hand, Proposition  4.2.2 is stronger than Proposition  4.2.1 in that it shows,

given the structure of the graph G, that there is an elementary formula for κ0 that holds for

all possible choices of αi, whereas Proposition  4.2.1 gives κ0 as a minimum of βS for sets S

in a collection of sets that is finite, but whose size depends on the sizes of the αi. On the

other hand, Proposition  4.2.2 is weaker than Proposition  4.2.1 in that it does not lead to an

explicit algorithm for finding κ0, since we do not have an algorithm to find the formula that

is proven to exist in Proposition  4.2.2 . Nevertheless, we give examples in Appendix  B where

we are able to find this formula. We leave it as an open question to find a general algorithm

to do this.

4.2.2 Large-scale backtracking: The parameter κ1

We have seen that the parameter κ0 controls moments of the quenched expected time

a walk spends at 0 before exiting a finite set. We will now show that in a similar way, κ1

controls moments of backward traversals of arbitrarily large stretches of the graph.
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In discussing the proof of the transient, one-dimensional case of Theorem  2.2.1 , we used

the graphs GM , finite graphs that looked like G except near endpoints. Here, we consider

these along with a “limiting graph” that is half infinite. Let G+ be a graph with vertex set

[0, ∞). The graph G+ contains all the same edges between vertices to the right of 0 with

the same weights as G. For vertices 1 ≤ i ≤ L, there is an edge from i to 0 with weight∑0
j=1−L αj−i. And to each vertex 1 ≤ j ≤ R is added an edge from 0 with weight ∑R

i=j αi.

Figure 4.1. The graph G+.

The graph G+ has zero divergence at all sites except 0, where the divergence is d+ −d− =

κ1. Thus, in a sense there is a “net flow” of strength κ1 from 0 to infinity, and to motivate

the following lemma, the reader may imagine an edge “from ∞ to 0” with weight κ1. In

some sense, the following lemma extends Corollary  1.4.3 (1) to this infinite graph. One can

prove it using a comparison between G and GM .

Lemma 4.2.3 ([ 22 , Theorem 2]). Under PG+, P 0
ω(T̃0 = ∞) ∼ Beta(κ1, d−).

We will use Lemma  4.2.3 to prove Theorem  2.3.4 in two separate propositions. Recall

that for a given walk X and integers x < y, the quantity Nx,y = Nx,y(X) is defined as the

number of trips from y to x.

Proposition 4.2.4. Suppose s ≥ κ1. Then the following hold:

1. EG[E0
ω[N0]s] = ∞.

2. For all x < y ∈ Z, EG[E0
ω[Nx,y]s] = ∞.

Like Theorem  2.3.3 , this proposition not only gives a sufficient condition for zero speed,

but gives the reason for zero speed. If κ0 ≤ 1, the speed is zero because it takes a long time

for the walk to exit small traps; on the other hand, if κ1 ≤ 1, the speed is zero because the

walk traverses large regions of Z many times.
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Proof.

Outline

The philosophy of the proof is that the components of a Dirichlet random vector become more

and more independent as their values become small. If (Y1, Y2, Y3, Y4) is a Dirichlet vector

with parameters (a, b, c, d), and (X1, X2) and (X3, X4) are independent Dirichlet vectors

with parameters (a, y) and (c, z), respectively, then P (X1 < ε, X3 < δ) � P (Y1 < ε, Y3 < δ)

as (ε, δ) → (0, 0). In other words, although these probabilities do not necessarily become

approximately equal (even if y = b and z = c), they are bounded by constant multiples of

each other. For each i = 1, . . . , R, the Dirichlet weight entering i from [1 − R, 0] in G is the

same as the Dirichlet weight entering i from 0 in G+. The goal of this proof is to exploit the

comparability of small-value probabilities and perform a coupling between (ω(0, i))R
i=1 under

PG+ and
(∑0

j=1−R ω(j, i)
)R

i=1
under PG.

Actually, we will couple vectors that distinguish between different edges to the same

vertex. Let E0 := {(i, j) : 1−R ≤ i ≤ 0, 1 ≤ j ≤ i+R, αj−i > 0} be the set of right-oriented

edges in G that originate from or cross 0, and for every e = (i, j) ∈ E0, let αe = αj−i. We

consider random vectors Z = (Ze)e∈E0
and Y = (Ye)e∈E0

, and a measure P ′ such that the

distribution of (Ze)e∈E0
under P ′ is the distribution of (ω(i, j))(i,j)∈E0

under PG, and such

that Y is a Dirichlet random vector with parameters (αe)e∈E0 . The amalgamation property

implies that
(∑0

i=1−R Y(i,j)
)R

j=1
is distributed like (ω(0, j)R

j=1 under PG+ . The idea is to define

a coupling event K, independent of Y and with positive probability, on which Ze ≤ Ye for

all e. We do not quite accomplish this, but we come close enough that we are able to use

Z and Y to construct random environments ω1 and ω2, drawn respectively according to PG

and PG+ , such that on K, ∑0
i=1−R P i

ω1(T̃[1−R,0] = ∞) is bounded above by a constant multiple

of P 0
ω2(T̃0 = ∞). From Lemma  4.2.3 we get that EG+

[
1

P 0
ω(T̃0=∞)

]
= ∞, so our coupling gives

us E ′
[

1∑0
i=1−R

P i
ω1 (T̃[1−R,0]=∞)

]
= ∞. This is enough to give us E0

G[N0] = ∞, and more careful

analysis yields E0
G[Nx,y] = ∞.
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Groundwork for the coupling

Suppose the edges in E0 are enumerated as e1, . . . , ek in some way. (In fact, we will enumerate

them in a random way, yet to be described, but for now assume the enumeration is fixed.)

We have said how Z and Y will be distributed under P ′. By the amalgamation property,

Ze1 and Ye1 are both beta random variables whose first parameter is αe1 . Their second

parameters may differ, but by ( 1.1 ) we nonetheless have P ′(Ze1 < ε) � εαe1 � P ′(Ze1 < ε),

where f(ε) � g(ε) means there exist positive constants c, C such that cg(ε) ≤ f(ε) ≤ Cg(ε)

for all ε ∈ [0, 1].

Note that for 1 ≤ i ≤ k − 1, Y ′
ei

:= Yei

1−
∑i−1

j=1 Yej

= Yei∑k

j=i
Yej

is a beta random variable,

independent of Ye1 , . . . , Yei−1 , and with first parameter αei
(this comes from the restriction

property, along with the amalgamation property). Let Y ′
ek

:= Yek

1−
∑k−1

j=1 Yej

= 1. Likewise, for

1 ≤ i ≤ k, Z ′
ei

:= Zei

1−
∑i−1

j=1 Zej1{ej =ei}
is a beta random variable, independent of Ze1 , . . . , Zei−1 ,

and with first parameter αei
. (We do not have Zek

= 1 a.s., because Zek
corresponds to

an edge from a vertex i ≤ 0 to a vertex j > 0, and there are still edges from i to vertices

to the left of 0.) By (  1.1 ), P ′(Z ′
ei

< ε) � εαi � P ′(Y ′
ei

< ε), for 0 ≤ i ≤ k − 1. Thus,

there exists a constant c such that for all ε ∈ [0, 1], and for all i = 1, . . . , k − 1, we have

P ′(Z ′
ek

< ε) ≥ cP ′(Y ′
ek

< ε). This c may depend on the chosen permutation (e1, . . . , ek) of

E0, but there are only finitely many permutations, so we may assume c is small enough to

work for any of them. For each 1 ≤ i ≤ k, let FZ′
ei

be the cdf for Z ′
ei

, and let QZ′
ei

be the

associated quantile function (since FZ′
ei

is continuous and strictly increasing on [0, 1], QZ′
ei

is

simply the inverse of FZ′
ei

restricted to the interval [0, 1]). Similarly, for 1 ≤ i ≤ k, let FY ′
ei

and QY ′
ei

be the cdf and quantile function for Y ′
ei

. 

2
 Choose ` to be an integer large enough

that 1
`

< c. Then

FZ′
ei

≥ 1
`
FY ′

ei
, 1 ≤ i ≤ k. (4.12)

Now given Y′ = (Y ′
e1 , . . . , Y ′

ek
) and Z′ = (Z ′

e1 , . . . , Z ′
ek

), we can recover Y and Z. First,

Ye1 = Y ′
e1 and Ze1 = Z ′

e1 , and then if Yj and Zj are known for 1 ≤ j ≤ i, then the formulas for

Y ′
ei

and Z ′
ei

can be used to find Yei
and Zei

. Therefore, one way to generate the vector Y is to
2

 ↑ Since Y ′
ek

is identically 1, its cdf is 0 to the left of 1 and 1 at 1, and its quantile function is identically 1.
All other Y ′

ei
have continuous cdfs and quantile functions.
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generate independent beta random variables Y ′
e1 , Y ′

e2 , . . . , Y ′
ek−1

with appropriate parameters

(which depend on the permutation (e1, . . . , ek)) and then use these to recover Y. Similarly,

Z can be generated by means of independent beta random variables Z ′
e1 , . . . , Z ′

ek
. Under this

method, the chosen permutation (e1, . . . , ek) affects the parameters for the Y ′
ei

and Z ′
ei

, as

well as the order in which they are put together, but the distributions of Y and Z, are the

same regardless of the chosen permutation.

The coupling

Our probability space is [0, 1]k × {0, . . . , ` − 1}k × ΩZ. Let P ′ be the product measure whose

marginals on ΩZ are equal to PG, and whose marginals on [0, 1]k ×{0, . . . , `−1}k are uniform.

An element of our probability space will be of the form

(U1, . . . , Uk, V1, . . . , Vk, ω) ,

where the Ui take values on [0, 1], the Vi take integer values from 0 to ` − 1, and ω can be

any environment on Z. Define the function Wi := Vi+Ui

`
. Then the Wi are i.i.d. uniform

[0, 1] under P ′.

Recall that ω>0 is the environment ω to the right of 0; that is, if ω = (ω(a, b))a,b∈Z, then

ω>0 = (ω(a, b))a,b∈Z,a>0. The values of P i
ω(T0 = ∞) are determined by ω>0 for 1 ≤ i ≤ R.

For a given ω>0, let (e1, . . . , ek) be a permutation of E0 such that

i < j ⇒ P ej
ω (T0 = ∞) ≤ P ei

ω (T0 = ∞). (4.13)

To get such an arrangement, sort vertices 1 ≤ j ≤ R in order of P j
ω(T0 = ∞), then sort the

edges (i, j) ∈ E0 primarily according to the rank of j and secondarily according to the value

of i.

We can now use uniform random variables along with quantile functions to get Z′ =

(Z ′
e1 , . . . , Z ′

ek
) and Y′ = (Y ′

e1 , . . . , Y ′
ek

). Letting Z ′
ei

= QZ′
ei

(W1) gives us the desired distribu-

tion for each Z ′
ei

under P ′, and letting Y ′
ei

= QY ′
ei

(U1) gives us the desired distribution for

each Y ′
ei

. This gives us Y′ and Z′, from which we may then recover Z and Y. Even though

the specific permutation (e1, . . . , ek) is used along with the Ui in defining Y, the distribution
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of Y is the same for any fixed permutation, and so Y is independent of ω. Similarly, Z is

also independent of ω.

Define the coupling event K to be the event that V1 = . . . = Vk = 0, the walk is

transient to the right, Pω–a.s., and ω(i, j) > 0 iff αj−i > 0 for all i, j ∈ Z. Because these

last two conditions each have P ′ probability 1, K is independent of ω as well as Y, and

has positive probability P ′(K) =
(

1
`

)k
. On K, Wi = 1

`
Ui for 1 ≤ i ≤ R. Let t ∈ [0, 1].

Then QZ′
ei

(1
`
t) is the unique x such that FZ′

ei
(x) = 1

`
t. For this x, applying ( 4.12 ) gives us

1
`
t ≥ 1

`
FY ′

ei
(x), or t ≥ FY ′

ei
(x). Applying the increasing function QY ′

ei
to both sides, we get

QY ′
ei

(t) ≥ x = QZ′
ei

(1
`
t). This is true for all t ∈ [0, 1], so on the event K, we have

Z ′
ei

≤ Y ′
ei

, i = 1, . . . , k. (4.14)

We now describe how to use Z, Y, and ω to create environments ω1 and ω2, drawn

according to PG and PG+ , respectively. For i, j > 0, let ω1(i, j) = ω2(i, j) = ω(i, j). We also

let ω1(i, j) = ω(i, j) for i > 0 and any j ≤ 0. But for ω2, transition probabilities from positive

to negative vertices are “collapsed” to 0. That is, for i > 0, we let ω2(i, 0) = ∑
j≤0 ω(i, j).

By the amalgamation property, one can check that transition probabilities at sites greater

than 0 are drawn according to PG+ . Moreover, for i ≥ 1, we have

P i
ω1(T≤0 = ∞) = P i

ω2(T0 = ∞) (4.15)

Then let ω2(0, j) = ∑0
i=1−R Y(i,j), j = 1, . . . , R. By the distribution of Y and the fact

that it is independent of ω, transition probabilities at sites greater than or equal to 0 of

ω2 are drawn according to PG+ (sites less than 0 don’t matter, so for example we can let

ω2(i, j) = 1{j=i} whenever i < 0).

For i /∈ [1 − R, 0], and for all j, let ω1(i, j) = ω(i, j). For i ∈ [1 − R, 0] and for all j > 0

with (i, j) ∈ E0, let ω1(i, j) = Z(i,j). For all i ∈ [1 − R, 0] and j ≤ 0, we keep ω1(i, j) the

same as ω(i, j), but scaled to ensure that ∑j ω1(i, j) = 1. That is,

ω1(i, j) =
(

1 −
∑
r>0

Z(i,r)

)
ω(i, j)∑

r≤0 ω(i, r)
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Notice that under this definition,
(

ω1(i,j)∑
r≤0 ω1(i,r)

)
r≤0

=
(

ω(i,j)∑
r≤0 ω(i,r)

)
r≤0

. By the restric-

tion property,
(

ω(i,j)∑
r≤0 ω(i,r)

)
r≤0

is independent of (ω(i, r))r>0 under PG, and by the way we

have defined ω1,
(

ω1(i,j)∑
r≤0 ω1(i,r)

)
r≤0

is independent of (Z(i,r))r>0 under P ′. Therefore, since

(Z(i,r))r>0
(L)= (ω(i, r))r>0 by construction, we have (ω1(i, j))j

(L)= (ω(i, j))j for each i, and the

transition probability vectors are all independent. Hence the law of ω1 is PG.

Comparing sums of probabilities

The goal for this part of the proof is to show that on the event K,

k∑
i=1

Zei
P ei

ω1(T≤0 = ∞) ≤ C
k∑

i=1
Yei

P ei
ω2(T0 = ∞) (4.16)

for some deterministic constant C. Note that the sum on the right side of (  4.16 ) is equal to

P 0
ω2(T̃0 = ∞).

By (  4.15 ), we could get (  4.16 ) by showing that Zei
≤ CYei

for all i. However, achieving

this precisely would require a more elaborate coupling. The difficulty is that if, for example,

Ye1 is very close to 1, all other Yei
are forced to be very small, whereas some of the Zei

are

independent of Ze1 . Our specific ordering of the edges e1, . . . , ek allows us to get around this

difficulty.

Let r be the smallest integer in {1, . . . , R} such that ∑r
i=1 Yei

> 1
2 (r is random). For

1 ≤ i ≤ r, on the event K we have

Zei
<

Zei

1 −∑i−1
j=1 Zej

1{ej=ei}
≤ Yei

1 −∑i−1
j=1 Yej

≤ 2Yei
.

(The middle terms are the definitions of Z ′
ei

and Y ′
ei

, respectively.) We now have

k∑
i=1

Zei
P ei

ω1(T≤0 = ∞) =
r∑

i=1
Zei

P ei
ω1(T≤0 = ∞) +

k∑
i=r+1

Zei
P ei

ω1(T≤0 = ∞)

≤
r∑

i=1
2Yei

P ei
ω2(T0 = ∞) +

k∑
i=r+1

P ei
ω2(T0 = ∞)

≤
r∑

i=1
2Yei

P ei
ω2(T0 = ∞) + kP er

ω2 (T0 = ∞), (4.17)
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where, for the last line, we used the fact that P ei
ω (T0 = ∞) is non-increasing in i by (  4.13 ).

We want to combine the two terms from ( 4.17 ) into one. To do this, we note

r∑
i=1

2Yei
P ei

ω2(T0 = ∞) ≥
r∑

i=1
2Yei

P er
ω2 (T0 = ∞)

= 2P er
ω2 (T0 = ∞)

r∑
i=1

Yei

≥ P er
ω2 (T0 = ∞),

where we used the same non-increasing property for the first line, and the definition of r in

the last line. Applying this to (  4.17 ) gives us

k∑
i=1

Zei
P ei

ω1(T≤0 = ∞) ≤
r∑

i=1
2Yei

P ei
ω2(T0 = ∞) + k

r∑
i=1

2Yei
P ei

ω2(T0 = ∞)

= 2(k + 1)
r∑

i=1
Yei

P ei
ω2(T0 = ∞)

≤ 2(k + 1)
k∑

i=1
Yei

P ei
ω2(T0 = ∞). (4.18)

This is exactly ( 4.16 ).

Comparing expectations

We consider the probability in ω1, starting from a point a in (−∞, 0], of never hitting

the set [1 − R, 0] at a positive time. If ω1 is transient to the right and jumps to the right are

bounded by R, then the only way for this to occur is for a to be in [1 − R, 0], for the first

91



step to be to the right of 0, and then for the walk to never again hit a site to the left of 0.

Thus, on the coupling event K,

max
a≤0

P a
ω1(T̃[1−R,0] = ∞) ≤

0∑
i=1−R

P i
ω1(T̃[1−R,0] = ∞)

=
0∑

i=1−R

R∑
j=1

Z(i,j)P
j
ω1(T≤0 = ∞)

≤ 2(k + 1)
0∑

i=1−R

R∑
j=1

Y(i,j)P
j
ω2(T0 = ∞)

= 2(k + 1)P 0
ω2(T̃0 = ∞). (4.19)

It is straightforward to check by induction that for all n ≥ 1, a ≤ 0,

P a
ω1(N[1−R,0] ≥ n) ≥ min

1−R≤i≤0
P i

ω1(T̃[1−R,0] < ∞)n−1. (4.20)

Summing over all n ≥ 1 in ( 4.20 ) and applying ( 4.19 ), we get on the coupling event K,

Ea
ω1 [N[1−R,0]] =

∞∑
n=1

P a
ω1(N[1−R,0] ≥ n)

≥
∞∑

n=1
min

1−R≤i≤0
P i

ω1(T̃[1−R,0] < ∞)n−1

= 1
max1−R≤i≤0 P i

ω1(T̃[1−R,0] = ∞)

≥ 1
2(k + 1)P 0

ω2(T̃0 = ∞)

= 1
2(k + 1)E0

ω2 [N0]. (4.21)
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Since the event K is independent of ω2, we conclude that

E ′
[
E0

ω1 [N[1−R,0]]s
]

≥ E ′
[
E0

ω1 [N[1−R,0]]s1K

]
≥ E ′

[
1

2s(k + 1)s
E0

ω2 [N0]s1K

]

= 1
2s(k + 1)s

E ′
[
E0

ω2 [N0]s
]

P ′(K)

= 1
`k

1
2s(k + 1)s

E ′
[
E0

ω2 [N0]s
]

.

By the way ω1 and ω2 are distributed, this means

EG
[
E0

ω[N[1−R,0]]s
]

≥ 1
`k

1
2s(k + 1)s

EG+

[
E0

ω[N0]s
]

= 1
`k

1
2s(k + 1)s

EG+

[
1

P 0
ω(T̃0 = ∞)s

]
(4.22)

If s ≥ κ1, then the right side of ( 4.22 ) is infinite by Proposition  4.2.3 and ( 1.1 ), so we have

∞ = EG[E0
ω[N[1−R,0]]s]

= EG

 0∑
i=1−R

E0
ω[Ni]

s
≤ EG

 0∑
i=1−R

Ei
ω[Ni]

s
≤ RsEG

[(
max

1−R≤i≤0
Ei

ω[Ni]
)s]

= Rs
0∑

i=1−R

EG
[(

Ei
ω[Ni]

)s]
= Rs+1EG

[(
E0

ω[N0]
)s]

.

This proves the first part of the proposition. At this point, the reader interested only in

characterizing ballisticity may skip the remainder of the proof, and may also skip Proposition

 4.2.5 , going straight to Section  4.2.3 . However, the next part of this proof and Proposition

 4.2.5 together provide an important insight into the behavior of the walk: namely, that the
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walk is expected to oscillate back and forth between any two points infinitely many times

precisely when κ1 ≤ 1.

Arbitrarily large backtracking

We now want to prove the second part of the proposition, which strengthens our result

to show that the expected number of oscillations between any two points is infinite. We do

this via the following claim.

Claim 4.2.4.1. For any a ≤ 0 and x < y ≤ 0 we have

EG
[
Ea

ω[Nx,y]s ω≤−R
]

= ∞, PG–a.s.

Assume for now that the claim is true. Taking expectations on both sides gives us

EG [Ea
ω[Nx,y]s] = ∞. (4.23)

Let x < y ∈ Z. If y ≤ 0, then letting a = 0 in ( 4.23 ) gives us EG [E0
ω[Nx,y]s] = ∞, which

is exactly what we needed to show for the second part of the proposition. If y > 0, then

( 4.23 ) gives us EG [E−y
ω [Nx−y,0]s] = ∞, and then the translation invariance of G gives us

EG [E0
ω[Nx,y]s] = ∞.

It remains, then, to prove the claim. Under P ′, ω1 is drawn according to PG. Since ω1

agrees with ω on (−∞, −R], our claim is equivalent to the statement E ′
[
Ea

ω1 [Nx,y]s ω≤−R
]

=

∞, P ′–a.s. And since σ(ω≤−R) is coarser than σ(ω≤0), it suffices to show that

E ′
[
Ea

ω1 [Nx,y]s ω≤0
]

= ∞, P ′–a.s. (4.24)

We first show that for i ∈ [1 − R, 0] and j ≤ 0, there is a constant C > 0 such that on

the event K,
ω1(i, j)
ω(i, j) ≥ C. (4.25)
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Recall that for i ∈ [1 − R, 0] and j ≤ 0, we have defined

ω1(i, j) =
(

1 −
∑
r>0

Z(i,r)

)
ω(i, j)∑

r≤0 ω(i, r) .

Now for i ∈ [1 − R, 0], we know that ∑r>0 Z(i,r) can be arbitrarily close to 1. How-

ever, we assert it is bounded away from 1 on the coupling event K, where necessarily

W1, W2, . . . , Wk < 1
`
. In fact, we assert that on this event, ∑r>0 Z(i,r) is maximized when

W1 = · · · = Wk = 1
`
. One can check by induction that for a given 1 − R ≤ i ≤ 0,

∑
r>0

Z(i,r) = 1 −
∏
r>0

(1 − Z ′
(i,r)). (4.26)

Since all the Z ′
(i,r) are independent, the right side of (  4.26 ) is maximized when they are all

as large as possible. On K, the largest they can get is when all the Wi are equal to 1
`
, and

this yields a value less than 1, proving our assertion and giving us ( 4.25 ).

Let −M < 0. For 1 − R ≤ i ≤ 0, consider the (i, x, y) excursion event Ei,x,y where:

• X0 = i

• If i 6= y, the walk hits y before returning to i or leaving (−∞, 0].

• After Ty, the walk hits x without hitting i more than once  

3
 in between and without

leaving (−∞, 0].

We say an (i, x, y) excursion event starts at time n if (Xn, Xn+1, . . .) ∈ Ei,x,y. Then the

number of such excursion events for any i is no more than 2Nx,y. This is because each trip

from y to x can count toward at most two excursion events due to the requirement that

there be only one visit to i in between visiting y and x. 

4
 

Fix ω≤0. For any i ≤ 0, the probability under P i
ω of any finite path that stays within

(−∞, 0] is fixed. On the event K (which is independent of ω≤0 and therefore still has
3

 ↑ It is necessary to allow for the walk to hit i once on the way to x in case b > i and the only way to reach x
from y is through i. For all other cases, we could require that the walk avoid i between hitting y and hitting
x, but to avoid treating this case separately, we allow one visit to i in all cases, at the cost of a factor of 2.
4

 ↑ For example, if the walk goes from i to y to i again to y again and then to x, then an excursion event
started at each of the times the walk was at i, but there was only one trip from to y to x.
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probability 1
`k conditioned on ω≤0), the probability under P i

ω1 of such a path is bounded from

below due to (  4.25 ). Therefore, on the event K, there exists a positive constant c = c(ω≤0)

such that on K,

min
1−R≤i≤0

P i
ω1(Ei,x,y) > c. (4.27)

(For each i consider a particular finite path that achieves Ei,x,y, take ci to be a lower bound

for the probability under P i
ω1 of taking that path, then take c to be the minimum of the ci.)

We have from ( 4.21 ) that on K, Ea
ω1 [N[1−R,0]] ≥ 1

2(k+1)E
0
ω2 [N0]. Taking conditional ex-

pectations, we almost surely have

E ′
[
Ea

ω1 [N[1−R,0]]s ω≤0
]

≥ E ′
[
Ea

ω1 [N[1−R,0]]s1K ω≤0
]

≥ 1
2s(k + 1)s

E ′
[
E0

ω2 [N0]s1K ω≤0
]

= 1
2s(k + 1)s

E ′
[
E0

ω2 [N0]s
]

P ′(K)

= ∞,

where the first equality comes from the fact that ω≤0, K, and ω2 are all independent. Now

with probability 1,

∞ = E ′
[
Ea

ω1 [N[1−R,0]]s ω≤0
]

= E ′
[( ∞∑

n=1
P a

ω1(Xn ∈ [1 − R, 0])
)s

ω≤0
]

= E ′

 0∑
i=1−R

∞∑
n=1

P a
ω1(Xn = i)

s

ω≤0
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Multiplying by cs, where c is the constant from ( 4.27 ), will not change the fact that

the expression is infinite. And since cs depends only on ω≤0, it may be pulled inside of an

expectation conditioned on ω≤0. Therefore we almost surely have

∞ = E ′

 0∑
i=1−R

∞∑
n=1

cP a
ω(Xn = i)

s

ω≤0


≤ E ′

 0∑
i=1−R

∞∑
n=1

P a
ω1(Xn = i)P i

ω1(Ei,x,y)
s

ω≤0


= E ′

 0∑
i=1−R

Ea
ω1 [# {n ∈ N0 : (Xk)∞

k=n ∈ Ei,x,y}]
s

ω≤0


≤ E ′

 0∑
i=1−R

Ea
ω1 [2Nx,y]

s

ω≤0


= (2R)sE ′

[
Ea

ω1 [Nx,y]s ω≤0
]

Thus, E ′
[
Ea

ω1 [Nx,y]s ω≤0
]

= ∞ with probability 1. This is (  4.24 ), which suffices to prove

our claim, and with it our theorem.

We now prove a slightly strengthened converse to Proposition  4.2.4 .

Proposition 4.2.5. If 0 < s < κ1, then there is an M ≥ 0 such that for all x, y ∈ Z with

y − x ≥ M , EG
[
E0

ω[N ′
x,y]s

]
< ∞.

Proof. Let 0 < s < κ1. It suffices to find M such that for any a ∈ Z,

EG
[
Ea

ω[N ′
0,M ]s

]
< ∞. (4.28)

This is because for any x, y with y − x = M , ( 4.28 ) gives us

EG
[
E−x

ω [N ′
0,M ]s

]
< ∞,

and then the shift-invariance of G gives us EG
[
E0

ω[N ′
x,y]s

]
< ∞. For y − x > M , we have

N ′
x,y ≤ N ′

x,x+M , which finishes the proof.

Let M ≥ 1 and and fix a ∈ Z. Suppose ω is such that jumps to the left and right are

bounded by L and R, respectively, and the Markov chain is irreducible with almost-sure
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transience to the right (this is all true with PG-probability 1). Then if the walk traverses

[0, M ] from right to left n − 1 times, traversing the interval from right to left an nth time

will require visiting one of the sites M, . . . , M + L − 1 and then backtracking past 0. Now if

there are at least n − 1 traversals of [0, M ] from right to left, transience to the right implies

that up to a P a
ω -null set, there will be a next visit to [M, M + L − 1] after the (n − 1)st such

traversal. Let ` be the location of this visit if n − 1 such traversals occur; otherwise, let ` be

0 (this value does not matter). On the event that there are n − 1 traversals of [0, M ] from

right to left,

P a
ω(N ′

0,M ≥ n `) = P `
ω(T≤0 < ∞)

≤ max
0≤i≤L−1

P M+i
ω (T≤0 < ∞). (4.29)

Taking conditional quenched expectations on both sides with respect to the event N ′
0,M ≥

n − 1 (and noting that the right hand side of ( 4.29 ) is constant with respect to ω), we get

P a
ω(N ′

0,M ≥ n N ′
0,M ≥ n − 1) ≤ max

0≤i≤L−1
P M+i

ω (T≤0 < ∞) (4.30)

Hence we have

P a
ω(N ′

0,M ≥ n) = P a
ω(N ′

0,M ≥ n − 1)P a
ω(N ′

0,M ≥ n N ′
0,M ≥ n − 1)

≤ P a
ω(N ′

0,M ≥ n) max
0≤i≤L−1

P M+i
ω (T≤0 < ∞).

From this, we can use induction to get

P a
ω(N ′

0,M ≥ n) ≤
(

max
0≤i≤L−1

P M+i
ω (T≤0 < ∞)

)n−1
.

Summing over all n ≥ 1 gives us

Ea
ω[N ′

0,M ] ≤ 1
min0≤i≤L−1 P M+i

ω (T≤0 = ∞) . (4.31)

It therefore suffices to show that the right hand side has finite sth moment.

98



Notice that by our assumptions on ω, for any x ≥ 0 and y ≥ x, there is a z in [y+1, y+R]

such that P z
ω(T≤0 = ∞) ≥ P x

ω (T≤0 = ∞). This is because if a walk from x is to avoid

backtracking to 0, it must enter [y + 1, y + R] before backtracking to 0, and then continue

to avoid backtracking to 0. Thus, in every interval of length R to the right of 0, there is at

least one site z (which depends on ω) such that P z
ω(T≤0 = ∞) ≥ max1≤i≤R P i

ω(T≤0 = ∞).

Call such a site an escape site, and let

E = E(ω) := {x ∈ [1, M ] : x is an escape site}. (4.32)

Then for x > 0,

P x
ω (T≤0 = ∞) ≥ P x

ω (TE < T≤0) max
1≤i≤R

P i
ω(T≤0 = ∞) + P x

ω (TE = T≤0 = ∞)

≥ P x
ω (TE < T≤0) max

1≤i≤R
P i

ω(T≤0 = ∞) + P x
ω (TE = T0 = ∞) max

1≤i≤R
P i

ω(T≤0 = ∞)

= P x
ω (TE ≤ T≤0) max

1≤i≤R
P i

ω(T≤0 = ∞).

Substituting this into ( 4.31 ) we get

Ea
ω[N ′

0,M ] ≤ 1
min0≤i≤L−1 P M+i

ω (TE ≤ T≤0)
· 1

max1≤i≤R P i
ω(T≤0 = ∞)

= 1
1 − max0≤i≤L−1 P M+i

ω (T≤0 < TE) · 1
max1≤i≤R P i

ω(T≤0 = ∞) (4.33)

To show that this has finite sth moment for large enough M we will use Hölder’s in-

equality. Choose s′ such that s < s′ < κ1, and let t = ss′

s′−s
. Thus, for any random variables

X and Y , where E[X t] < ∞ and E[Y s′ ] < ∞, we will have E[(XY )s] < ∞. We will show

that the second term of the right hand side of (  4.33 ) has finite s′th moment, and that the

first term can have arbitrarily high finite moments for M sufficiently large, so that for large

enough M , the first term has finite tth moment.

By arguing along the lines of Claim  3.2.1.1 , we see that the distribution of max1≤i≤R P i
ω(T0 =

∞) under PG+ is the distribution of max1≤i≤R P i
ω(T≤0 = ∞) under PG. Recall from Lemma

 4.2.3 that under PG+ , P 0
ω(T̃0 = ∞) ∼ Beta(κ1, d−). Now for PG+–a.e. environment ω,
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P 0
ω(T̃0 = ∞) ≤ max1≤i≤R P i

ω(T0 = ∞) by the Markov property, because X1 ∈ [1, R] P0
G+–a.s.

We may conclude that

EG

( 1
max1≤i≤R P i

ω(T≤0 = ∞)

)s′ ≤ EG+

( 1
P 0

ω(T̃0 = ∞)

)s′ < ∞. (4.34)

We now show that the first term of ( 4.33 ) has finite tth moment, provided M is chosen

large enough. Let A ∈ [0, L − 1] be the maximizer in the denominator this term. That is,

M +A is the site within [M, M +L−1] from which there is the highest probability of hitting

0 before hitting an escape site between 0 and M . For i ∈ [0, L−1], let ωi be the environment

ω, modified at sites other than M + i in [M, ∞) so that the walk jumps from these sites to

M + i with probability 1 under ωi. That is, for y ≥ M , ωi(y, M + i) = 1.

Now under ω, a walk from any site to the right of [M, M +L−1] must enter [M, M +L−1]

before hitting 0. By the strong Markov property, the site in [M, ∞) with the best probability

(under ω) of hitting 0 strictly before E is therefore A. Forcing the walk to jump from other

sites in [M, ∞) to site A can only increase the probability that the walk hits 0 before E , by

Lemma  A.0.2 . Therefore,

max
0≤i≤L−1

P M+i
ω (T≤0 < TE) = P M+A

ω (T≤0 < TE) ≤ P M+A
ωA

(T≤0 < TE).

From this we get

1
1 − max0≤i≤L−1 P M+i

ω (T≤0 < TE) ≤ 1
P M+A

ωA
(TE ≤ T≤0)

≤
L−1∑
i=0

1
P M+i

ωi
(TE ≤ T≤0)

, (4.35)

and it suffices to show that each term in the sum has finite tth moment for large enough M .

Say that a set W ⊆ [1, M ] is an escape-type set if W contains at least one element of

every interval of length R contained in [1, M ]. Then E is an escape-type set. Now for each

escape-type set W , consider an environment ωi,W such that:

1. All sites y ∈ W (ω) are sinks: for all y ∈ W, z ∈ Z, ωi,W (y, z) = 1{z=y};

2. For y = 1, . . . L − 1, ωi,W (y, 0) = ∑
z≤0 ωi(y, z) and for z < 0, ωi,W (y, z) = 0;
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3. For all z, ωi,W (0, z) = 1{z=M+i};

4. All other transition probabilities are the same in ωi,W as in ωi.

By construction, P M+i
ωi

(TE ≤ T≤0) = P 0
ωi,E

(T̃0 = ∞). Hence

1
P M+i

ωi
(TE ≤ T≤0)

= E0
ωi,E

[N0]. (4.36)

We wish to show, with Tournier’s lemma, that this quantity has finite tth moment for

sufficiently large M . Since E is random, ωi,E is not a Dirichlet environment, because the set

E of sink sites is random. Nevertheless, for a fixed M , there are finitely many possible escape

sets. Hence it suffices to show that for large enough M , E0
ωi,W

[N0] has finite tth moment for

every escape-type set W . Note that sites outside of the set [0, M + i + R] are unreachable

from sites inside the set under ωi,W . By the amalgamation property, the restriction of ωi,W

to [0, M + i + R]2 is distributed as a Dirichlet environment on a graph GM,i,W with vertex

set [0, M + i + R] that looks like G on these vertices except that:

1. Directed edges from sites w ∈ W are removed and replaced with one self-loop at each

such site;

2. For each y = 1, . . . L − 1, all directed edges from y to sites less than or equal to 0 are

replaced with one directed edge to 0 with the sum of their weights (in our illustration

we use multiple edges for visual clarity);

3. All directed edges from 0 are replaced with one directed edge to M + i;

4. All directed edges from each y ∈ [M + L, M + i + R] are replaced with one edge to

M + i.

When there is only one edge from a vertex, its weight does not matter—weight 1 is as good

as any. Figure  4.2 illustrates an example of a graph GM,i,W . Any strongly connected set

S of vertices containing 0 must contain M + i and a path from M + i to 0, but cannot

contain any vertices in W . Dividing [0, M ] into consecutive intervals of length m0 (where

m0 ≥ max(L, R) is large enough that every interval of length m0 is strongly connected in
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Figure 4.2. An example of the graph GM,i,W with L = 3, R = 2, M = 6,
i = 1, and W = {2, 3, 5}.

G), we see that every such interval contains a vertex in S (because a path from M + i to 0 in

Gi,W cannot jump over L vertices), and every such interval contains a vertex in W (because

such a vertex exists in every interval of length R). Hence, by the definition of m0, every

such interval must contain an edge from S to a vertex not in S. If M ≥ qm0, so that [0, M ]

contains at least q disjoint intervals of length m0, and if ε is the smallest weight any edge in

G has, then βS ≥ qε. Taking M sufficiently large raises this lower bound above t. Fix this

large M . Then Tournier’s lemma ensures that EGM,i,W
[E0

ω[N0]t] < ∞ for all escape-type sets

W , which implies that EG
[
E0

ωi,W
[N0]t

]
< ∞. Since M is fixed, there are finitely many such

W , so

EG
[
E0

ωi,E
[N0]t

]
≤ EG

[∑
W

E0
ωi,W

[N0]t
]

< ∞,

where the sum is taken over all escape-type sets W . Now, by ( 4.36 ), each term of the sum

on the right hand side of ( 4.35 ) has finite tth moment, giving finite tth moment to the left

hand side. This is what we needed to complete the proof, as we may now apply Hölder’s

inequality to ( 4.33 ) to see that EG
[
Ea

ω[N ′
0,M ]s

]
< ∞, which is precisely ( 4.28 ).

We have now proven each part of Theorem  2.3.4 , which we recall here:

Theorem (Theorem  2.3.4 ). Let κ1 > 0, so that the walk is transient to the right. Then, if

s > 0, the following are equivalent:

(a) κ1 > s.

(b) There is an M ≥ 0 such that for all x, y ∈ Z with y − x ≥ M , EG
[
E0

ω[N ′
x,y]s

]
< ∞.

(c) There exist x < y ∈ Z such that EG [E0
ω[Nx,y]s] < ∞.
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Proof of Theorem  2.3.4 .

(a) ⇒ (b) This is Proposition  4.2.5 .

(b) ⇒ (c) This follows from the fact that N ′
−M,0 ≥ N−M,0.

(c) ⇒ (a) This is the contrapositive of Proposition  4.2.4 (2).

4.2.3 Using κ0 and κ1 to characterize ballisticity

From Theorems  2.3.3 and  2.3.4 , we can conclude that if s ≥ κ0, then EG[E0
ω[N0]s] = ∞

due to finite trapping effects, and that if s ≥ κ1, then EG[E0
ω[N0]s] = ∞ due to large-scale

backtracking effects. On the other hand, if s < min(κ0, κ1), then neither effect, on its own, is

enough to cause EG[E0
ω[N0]s] to be infinite. However, we must consider the possibility that

the two effects could “conspire together”, since the quenched probability of backtracking

and hitting 0 is not completely independent of the quenched probability of hitting 0 a large

number of times before exiting a small region. Nevertheless, we are able to show that there

is enough independence that this is not an issue; E0
ω[N0] indeed has finite moments up to the

minimum of κ0 and κ1. In this subsection, we prove Theorem  2.3.5 , which we now recall.

Theorem (Theorem  2.3.5 ). Assume κ1 > 0. Then EG
[
(E0

ω[N0])s
]

< ∞ if and only if

s < min(κ0, κ1).

Before proving it, we begin with the following lemma.

Lemma 4.2.6. For any z > 0,

EG

[
1

P 0
ω(T≥z < T̃0)s

]
< ∞ ⇔ s < min(κ0, d+).

Equivalently, EG
[
E0

ω

[
N

(−∞,z)
0

]s]
= ∞ if and only if s < min(κ0, d+).

Proof. First, assume s < min(κ0, d+). We will consider an integer −M < −R. For an

environment ω, let j(ω) be the vertex j in [1 − M, R − M ] that maximizes P j
ω(T0 < T≥z).

Consider an environment ω′ such that:

1. for i ∈ [z − R, z − 1], ω′(i, z) = ∑
j≥z ω(i, j) and for j > z, ω′(i, j) = 0;
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2. z is a sink—for all x, ω′(z, x) = 1{x=z};

3. all other transition probabilities are the same in ω′ as in ω.

By construction, P x
ω′(T̃0 < ∞) = P x

ω′(T̃0 < Tz) = P x
ω (T̃0 < T≥z) for all x. We now modify

the environment further. For each 1 ≤ ` ≤ R, let ω` be the environment such that

1. for i ∈ [−M − L + 1, −M ], ω′(i, j) = 1{j=`} for all j;

2. All other transition probabilities are the same in ω` as in ω′.

In particular, we are interested in ωj(ω). Because j(ω) maximizes P j
ω(T0 < T≥z) on [−M −

L + 1, −M ], modifying sites in this set to send the walk directly to j(ω) can only increase

the probability, from any starting point, that T0 < Tz (see Lemma  A.0.2 for details). Thus,

P 0
ωj(ω)

(T̃0 < T≥z) ≤ P 0
ω′(T̃0 < T≥z) = P 0

ω(T̃0 < T≥z).

Moreover, for PG–a.e. ω, we have E0
ωj(ω)

[N0] = 1
P 0

ωj(ω)
(T̃0=∞) . It follows that

1
P 0

ω(T≥z < T̃0)
≤ E0

ωj(ω)
[N0].

It suffices, therefore, to show that EG[Eωj(ω)[N0]s] < ∞. We would like to use Tournier’s

lemma. Although ωj(ω) is not distributed according to a Dirichlet distribution (since j(ω)

is random), the amalgamation property implies that each ω` is distributed as a Dirichlet

environment. In particular, the restriction of ω` to [−M − L + 1, z]2 is distributed as a

Dirichlet environment on a graph G` with vertices [−M−L+1, z] and the following properties:

1. each vertex in [−M − L + 1, −M ] has one edge to ` with arbitrary weight, say 1;

2. vertices in [1 − M, z − R − 1] have the same edges with the same weights as in G;

3. vertices in [z − R, z − 1] have the same edges with the same weights as in G, except

that edges that would terminate to the right of z terminate at z; 

5
 

5
 ↑ As usual, if this would result in multiple edges, they are collapsed into one edge with the sum of their

weights, but we leave multiple edges in our illustration for clarity.
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4. z has one self-loop with arbitrary weight, say 1.

With probability 1, no vertices to the left of −M − L + 1 or to the right of z are reachable

from [−M, z], so what happens at these vertices does not really matter. Figure  4.3 shows an

example of the graph G`.

Figure 4.3. An example of the graph G`, where L = 2, R = 3, z = 1, M = 6,
and ` = 2 − M .

Moreover, since 1 − M ≤ j(ω) ≤ R − M , we have E0
ωj(ω)

[N0] ≤ ∑R−M
`=1−M E0

ω`
[N0]. Thus,

to show that EG

[
1

P 0
ω(T≥z<T̃0)s

]
< ∞, it suffices to show that EG[E0

ω`
[N0]s] = EG`

[E0
ω[N0]s] is

finite for each 1 − M ≤ ` ≤ R − M .

We make the following claim.

Claim 4.2.6.1. If M is chosen large enough, G` will have the property that every finite,

strongly connected set S of vertices with 0 ∈ S has βS ≥ min(d+, κ0).

The proof of this claim is very similar to the proof of Proposition  4.2.1 , so we only sketch

it here, making special note of important similarities to and differences from the earlier proof.

Like G, the graph G` has the property that for any finite, strongly connected set set S of

vertices, if x < y are consecutive “non-insulated” vertices to the right of −M that differ

by more than m0, then (x, y) ⊂ S. The graph G` also has the property that every strongly

connected set S ′ that contains m0 or more consecutive vertices has total weight at least d+

exiting S ′ to the right. However, because of how the graph is modified, there need not be

any weight exiting S ′ to the left. We may therefore choose M large enough that every finite,

strongly connected set S containing 0 either (a) does not reach −M , in which case S looks

like a subset of G and βS ≥ κ0, or (b) contains at least m0 consecutive vertices in a row, in

which case βS ≥ d+, or (c) contains enough non-insulated vertices that βS ≥ min(d+, κ0).

This completes the proof of the claim.
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Since we have assumed s < min(κ0, d+), our claim gives us s < βS for all strongly

connected sets S containing 0, and therefore Tournier’s lemma tells us that EG`
[E0

ω[N0]s] <

∞.

This finishes one direction of the lemma, and the only direction that is needed for the

rest of the paper. For the other direction, assume s ≥ min(κ0, d+). If s ≥ κ0, then Theorem

 2.3.3 implies EG
[
E0

ω

[
N

[−M,0]
0

]s]
= ∞, which implies EG

[
E0

ω

[
N

(−∞,z)
0

]s]
= ∞. If s ≥ d+,

then one can check that EG

[(∑
i<z,j≥z ω(i, j)

)−s
]

= ∞, and then arguments along the lines

of the last part of the proof of Proposition  4.2.4 give the desired result.

We are now ready to prove Theorem  2.3.5 , which gives us the final piece for our charac-

terization of ballisticity.

Proof of Theorem  2.3.5 . The forward direction is implied by Theorem  2.3.3 and Theorem

 2.3.4 . For the reverse direction, let s < s′ < min(κ1, κ0). We want to show that EG [E0
ω[N0]s] <

∞. Since, for all ω, E0
ω[N0] = 1

P 0
ω(T̃0=∞) , we must examine the quantity P 0

ω(T̃0 = ∞).

Let M = qm0 be a positive multiple of m0 (we will later take q to be large enough

to satisfy a given condition, but we will not take q to infinity). For each 1 ≤ j ≤ q, let

Bj = ((j − 1)m0, jm0], and define

fω(Bj) := min
x∈Bj ,1≤i≤R

P x
ω (XTBc

j
= jm0 + i)

Since fω(Bj) only depends on ωBj , the fω(Bj) are i.i.d.

We will show that for some a, C > 0, PG(fω(B1) < ε) ≤ Cεa. For a given vertex x, let

ωx = minαy−x>0 ω(x, y). Since intervals of length m0 are strongly connected, there is a path

in G from every x ∈ B1 to every m0 + i, 1 ≤ i ≤ R, that uses only vertices in B1, and each at

most once (since the existence of a path with loops implies the existence of a path without

loops). Therefore,

fω(B1) ≥

 ∏
x∈B1

ωx

 .
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Now for each x,

PG (ωx < ε) ≤ (R + L) max
αy−x>0

PG(ω(x, y) < ε)

≤ Cεa

for some constant C > 0, where a = minαi 6=0 αi. Now by [  29 , Lemma 9], there is some r such

that PG(∏x∈B1 ωx ≤ ε) ≤ C ′εa(− ln ε)r for all ε sufficiently small. Let a′ < a; then for large

enough C ′′, we have PG(∏x∈B1 ωx < ε) ≤ C ′′εa′ , and therefore PG(fω(B1) < ε) ≤ C ′′εa′

Let M = m0q be large enough that a′q > t := ss′

s′−s
. Since all the fω(Bj) are i.i.d., we

have

PG

(
max

0≤j≤q−1
fω(Bj) < ε

)
≤ (C ′′εa′)q. (4.37)

Now let j∗ be the maximizer of fω(Bj) over 0 ≤ j ≤ q − 1. By ( 4.37 ) and the choice of M ,

we have

EG

( 1
fω(Bj∗)

)t
 < ∞. (4.38)

As in the proof of Proposition  4.2.5 , we note that for any random variables X and Y , where

E[X t] < ∞ and E[Y s′ ] < ∞, we will have E[(XY )s] < ∞ by Hölder’s inequality.

For PG–a.e. environment ω we have

P 0
ω(T̃0 = ∞) ≥ P 0

ω(TBj∗ < T̃0)fω(Bj∗) max
1≤i≤R

P j∗m0+i
ω (T≤j∗m0 = ∞).

This is because one way for the walk to never return to 0 is for it to hit Bj∗ before returning

to 0, then once it is in Bj∗ , to make its way to the vertex j∗m0 + i just to the right of Bj∗ that

maximizes the probability of never backtracking to j∗m0, and then to avoid backtracking to

j∗m0. Thus

107



1
Pω(T̃0 = ∞)

≤ 1
P 0

ω(TBj∗ < T̃0)fω(Bj∗) max1≤i≤R P j∗m0+i
ω (T≤j∗m0 = ∞)

=
q∑

j=1

1{j=j∗}

P 0
ω(TBj

< T̃0)fω(Bj∗) max1≤i≤R P jm0+i
ω (T≤jm0 = ∞)

≤ 1
fω(Bj∗)

q∑
j=1

1
P 0

ω(TBj
< T̃0)

· 1
max1≤i≤R P jm0+i

ω (T≤jm0 = ∞)
(4.39)

Now for each fixed j, P 0
ω(TBj

< T̃0) and max1≤i≤R P jm0+i
ω (T≤jm0 = ∞) are independent.

Under PG, the reciprocal of the former has finite s′th moment by Lemma  4.2.6 , since s′ ≤

min(κ0, κ1) ≤ min(κ0, d+).

We show that the reciprocal of max1≤i≤R P jm0+i
ω (T≤jm0 = ∞) has finite s′th moment.

Under PG, its distribution is the same as that of max1≤i≤R P i
ω(T≤0 = ∞), which (arguing

as in Claim  3.2.1.1 ) is also the distribution of max1≤i≤R P i
ω(T0 = ∞) under PG+ . Now for

PG+–a.e. environment ω, P 0
ω(T̃0 = ∞) ≤ max1≤i≤R P i

ω(T0 = ∞). Hence

EG

[
1

max1≤i≤R P jm0+i
ω (T≤jm0 = ∞)s′

]
≤ EG+

[
1

P 0
ω(T̃0 = ∞)s′

]
. (4.40)

Lemma  4.2.3 tells us that under PG+ , P 0
ω(T̃0 = ∞) ∼ Beta(κ1, d−). Since s′ ≤ κ1, the right

side of ( 4.40 ) is finite by ( 1.1 ).

Returning now to (  4.39 ), we have seen that the two fractions inside the sum are inde-

pendent and each have finite s′th moment. Thus, the entire sum has finite s′th moment. By

this and by ( 4.38 ), we may apply Hölder’s inequality to get
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EG[E0
ω[N0]s]= EG

[
1

Pω(T̃0 = ∞)s

]

≤ EG

 1
fω(Bj∗)s

 q∑
j=1

1
P 0

ω(TBj
< T̃0)

· 1
maxv∈Bj

P v
ω(Xn > Bj for all n ≥ 1)

s

≤ EG

( 1
fω(Bj∗)s

) s′
s′−s


s′−s

s′

· EG


 q∑

j=1

1
P 0

ω(TBj
< T̃0)

· 1
maxv∈Bj

P v
ω(Xn > Bj for all n ≥ 1)

s′
s
s′

< ∞.

We are now able to completely characterize ballisticity.

Theorem (Theorem  2.3.6 ). The walk is ballistic if and only if min(κ0, |κ1|) > 1.

Proof of Theorem  2.3.6 . By symmetry, we may assume κ1 > 0 without loss of generality.

Let s = 1 in Theorem  2.3.5 , and then apply Lemma  2.3.2 .
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5. ACCELERATION IN ONE DIMENSION

Recall from Chapter  2 that a Bouchet acceleration function on Z is a measurable function A

from the space ΩZ of environments on Z to the space of distributions of R+-valued random

variables, where A(ω) only depends the environment ω within a finite distance from the

origin. For an environment ω on Z, a point x ∈ Z, and a Bouchet acceleration function

A, we let P x
ω,A be the law of a continuous-time Markov chain that begins at x, moves in

a sequence of steps according to P x
ω , but with independent waiting times at each site y

distributed according to A(θyω). Then we let Px
G,A := PG × P x

ω,A. By Proposition  5.1.1 ,

there is a P0
G,A–almost sure limiting speed v(A). The main theorem of this chapter is the

following.

Theorem (Theorem  2.4.1 ). Assume κ1 6= 0. Then PG has essential slowing if and only if

|κ1| ≤ 1.

5.1 Redoing proofs with acceleration

We redo some of the work from Chapter  4 in the setting of accelerated random walks.

For a continuous-time walk X = (Xt)t≥0 on a vertex set V with vertex x, Nx(X) =∫∞
0 1Xt=xdt is the amount of time the walk spends at site x. We likewise give NS

x , Tx, TS

and so on definitions analogous to the discrete-time definitions, but with N0 replaced with

R≥0, etc. See Appendix  C for details.

Recall that for a given Bouchet acceleration function A, a given environment ω, and

a given x ∈ Z, the measure P x
ω,A is defined to be the law of a continuous-time random

walk whose path obeys the law P x
ω , with independent wait times at each site y distributed

according to A(θyω). Define Px
A := P × P x

ω,A, and let v(A) be the P0
A–a.s. limiting velocity

of the walk. We first show that it exists.

We prove a generalization of  4.1.1 for accelerated, transient RWRE on Z.

Proposition 5.1.1. Let A be a Bouchet acceleration function, and let M be such that A(ω)

depends only on ω[−M,M ]. Let P be a probability measure on ΩZ satisfying (  C1 ), (  C2 ), (  C3 ),

and ( C4 ). Then the following hold:
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1. There is a P0
A–almost sure limiting velocity

v(A) := lim
n→∞

Xt

t
= E0

A[Xτ2 − Xτ1 ]
EA[τM+2 − τM+1]

, (5.1)

where the numerator is always finite, and the fraction is understood to be 0 if the

denominator is infinite.

2. limx→∞
T≥x

x
= 1

v(A) , where 1
v(A) is understood to be ∞ if v(A) = 0.

The proof follows [ 35 ] in defining regeneration times (τk)∞
k=0. Let τ0 := 0, and for k ≥ 1,

we define

τk := min{t ≥ τk−1 : Xt > Xr for all r < t, Xt ≤ Xr for all r > t}. (5.2)

A crucial fact is that the sequences (Xτn − Xτn−1)∞
n=2 and (τn − τn−1)∞

n=M+2 are stationary

and ergodic. Using these regeneration times, we are able to derive a formula for v(A), as

well as a characterization in terms of hitting times.

It is standard (see, for example, [  35 ], [  37 ]) to prove a LLN in (1) for the discrete-time

case (where we may take M = 0) by the following steps:

(a) Show that Xτk

k
approaches E[Xτ2 − Xτ1 ]

(b) Show that τk

k
approaches E[τ2 − τ1]

(c) Show that E[Xτ2 − Xτ1 ] < ∞

(d) Conclude that the limit ( 5.1 ) holds for the subsequence
(

Xτk

τk

)
k

(e) Use straightforward bounds that come from the definitions of the τk to get the limit for

the entire sequence
(

Xn

n

)
n
.

Part (2) then follows from a comparison of x
H≥x

with a subsequence of Xn

n
.

In the discrete-time case, the definition of the regeneration times is precisely set up so

that both the sequences (τk − τk−1)k≥2 and (Xτk
− Xτk−1)k≥2 are i.i.d. sequences, so proving

the limits (a) and (b) is a matter of tracing how the i.i.d. feature follows from the definitions

111



and applying the strong law of large numbers. In fact, arguing as in [ 35 , Lemma 1], one can

show that the triples

ξn :=
(
τn − τn−1 , (Xτn−1+i − Xτn−1)τn−τn−1

i=1 , (ωx)Xτn −1
x=Xτn−1

)
(5.3)

are i.i.d. under P0 = P × P 0
ω for n ≥ 2. In the continuous-time case, however, where the

definition is

ξn :=
(
τn − τn−1 , (Xτn−1+r − Xτn−1)0≤r≤τn−τn−1 , (ωx)Xτn −1

x=Xτn−1

)
, (5.4)

there is some dependence, because the quenched distributions of the jump times can depend

on the environment outside of [Xτn−1 , Xτn − 1]. For the same reason, the sequence does not

become stationary until n ≥ M + 2, when the jumping times are guaranteed to only depend

on the environment at or to the right of Xτ1 . Nevertheless, the (ξn)∞
n=M+2 are still stationary

and ergodic under P0
A (and, in fact, finite-range dependence holds).

To show that the sequence (ξn)∞
n=M+2 is stationary and ergodic under the measure P0

A,

we generate a sequence (ξ∗
n)∞

n=1 under the measure P0. This determines ω≥0, which is enough

to determine A(θxω) for every x ≥ M . By expanding the probability space, we can then

generate random jumping times for each step to create a sequence (ξn)∞
n=M+2 drawn according

to the measure PA. Now given the sequence (ξ∗
n)∞

n=2, the distribution of each ξn depends only

on (ξ∗
k)n+M

k=n−M , since this is enough to determine ωk for every Xτn−1 − M ≤ k < Xτn + M ,

which determines jump time distributions at each site k for Xτn−1 ≤ k < Xτn . It follows

that (ξn)∞
n=M+2 is stationary and ergodic.

Therefore, by Birkhoff’s ergodic theorem one may derive the same limits (a) and (b). The

finiteness in (c) relates only to the path of the walk, not to the time taken, and therefore

the proof is entirely unchanged from the proof given in Appendix  A .Then (d) and (e) easily

follow.

The main result of this subsection is the following.

Proposition 5.1.2. Let P be a probability measure on ΩZ satisfying ( C1 ), ( C2 ), ( C3 ), and

( C4 ). Let A be a Bouchet acceleration function. Then we have the following:
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1. If E0
A[N0] < ∞, then v(A) > 0.

2. If E0[N0] < ∞, then v > 0.

 Jump to proof. 

The second statement is a special case of the first. For the rest of this section, assume P

satisfies (  C1 ), ( C2 ), (  C3 ), and ( C4 ). We also use regeneration times to derive the following

lemma.

Lemma 5.1.3. For any a, c ∈ Z,

lim
x→∞

1
x

x∑
k=c

Nk = 1
v(A) , Pa

A − a.s. (5.5)

If v(A) = 0, then the limit is infinity.

Proof. Recall that N
(−∞,x)
k is the amount of time the walk spends at k before T≥x. Then for

x > c,

T≥x

x
= 1

x

c−1∑
k=−∞

N
(−∞,x)
k + 1

x

x−1∑
k=c

N
(−∞,x)
k . (5.6)

The first term approaches 0 almost surely by assumption ( C4 ); hence, by Proposition  5.1.1 

(2),

lim
x→∞

1
x

x−1∑
k=c

N
(−∞,x)
k = 1

v(A) ,Pa
A − a.s. (5.7)

We note that Nk and N
(−∞,x)
k differ only if the walk backtracks and visits k after reaching

[x, ∞). The sum, over all k < x, of these differences, is the total amount of time the walk

spends to the left of x after T≥x, and it is bounded above by the time from T≥x to the next

regeneration time (defined as in (  5.2 )), which is in turn bounded above by τJ(x) − τJ(x)−1,

where J(x) is the (random) j such that τj−1 ≤ T≥x < τj. Hence

1
x

x−1∑
k=c

N
(−∞,x)
k ≤ 1

x

x−1∑
k=c

Nk ≤ 1
x

x−1∑
k=c

N
(−∞,x)
k + 1

x
[τJ(x) − τJ(x)−1] (5.8)
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Assume v(A) = 0. Then by (  5.7 ), the left side of (  5.8 ) approaches ∞ as x approaches

∞, and therefore so does the middle.

On the other hand, suppose v(A) > 0. By (  5.1 ), EA[τM+2 − τM+1] < ∞. Then by

Birkhoff’s ergodic theorem, τn

n
→ EA[τM+2 − τM+1] < ∞, which implies that τn−τn−1

n
ap-

proaches 0. Since J(x) ≤ x + 1, the term 1
x
[τJ(x) − τJ(x)−1] approaches zero almost surely;

hence the Squeeze Theorem yields the desired result.

Suppose for now that R = 1. Then, for almost every ω, it is possible to define a bi-

infinite walk X = (X t)t∈R whose “right halves” are distributed like random walks under ω

with the acceleration function A. From each site a, run a walk according to the transition

probabilities and jump time probabilities given by ω and A(ω) until it reaches a + 1 (which

occurs in finite time P a
ω,A–a.s. for P–a.e. ω). Concatenating all of these walks almost surely

gives, up to a time shift  

1
 , a unique walk X = (X t)t∈R such that for any x, if it is known that

X jumps to x at time t, then (Xs)s≥t is distributed according to P x
ω,A  

2
 . We may think of X

as a walk from −∞ to ∞ in the environment ω with acceleration function A.

In fact, with a bit more work, we can define a similar bi-infinite walk in the general case

R > 0. Call the set of vertices ((k − 1)R, kR] the kth level of Z, and for x ∈ Z, let [[x]]R
denote the level containing x. Let ω be a given environment. From each point a ∈ Z, run

a walk according to the transition probabilities and jump time probabilities given by ω and

A until it reaches the next level (i.e., [[a + R]]R). This will happen P a
ω,A–a.s. for P–a.e. ω,

by transience to the right and because it is not possible to jump over a set of length R. Do

this independently at every point for every level. This gives what we’ll call a cascade: a set

of (almost surely finite) walks indexed by Z, where the walk indexed by a ∈ Z starts at a

and ends upon reaching level [[a + R]]R. Then for almost every cascade, concatenating these

finite walks gives, for each point a, a right-infinite continuous-time walk Xa = (Xa
t )t≥0. Let

Pω,A be the probability measure we have just described on the space of cascades, and let

Eω,A, PA, and EA be correspondingly defined.
1

 ↑ Choose, for example, the time shift where X0 = 0 and where Xt < 0 whenever t < 0.
2

 ↑ In order for the bi-infinite walk to be indexed by all real numbers, it must be true that the sum over all
x ≥ 0 of the time it takes for the walk started at x to hit x + 1 is infinite, and that the same sum over all
x < 0 is also infinite. It is not hard to see that this is true with probability 1 for P–a.e. environment.
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It is crucial to note that by the strong Markov property, the law of Xa under Pω,A is

the same as the law of X under P a
ω,A, which also implies that the law of Xa under PA is the

same as the law of X under Pa
A.

For each x ∈ Z, let the “coalescence event” Cx be the event that all the walks from level

[[x − R]]R first hit level [[x]]R at x. On the event Cx, we say a coalescence occurs at x.

Lemma 5.1.4. Let E1 be the event that all the Xa are transient to the right, that all steps to

the left and right are bounded by L and R, respectively, and that infinitely many coalescences

occur to the left and to the right of 0. Then PA(E1) = 1.

Proof. Boundedness of steps has probability 1 by assumption (  C3 ), and by assumption (  C4 ),

all the walks Xa are transient to the right with probability 1. Now for k ≥ 2 and x ∈ Z, let

Cx,k be the event that all the walks from level [[x − R]]R first hit level [[x]]R at x without

ever having reached [[x − kR]]R. Choose k large enough that PA(C0,k) > 0; then and under

the law E, the events {CnkR,k}n∈Z are all independent and have equal, positive probability.

Thus, infinitely many of them will occur in both directions, PA–a.s. By definition, Cx,k ⊂ Cx,

and so infinitely many of the events Cx occur in both directions, PA–a.s.

Assume the environment and cascade are in the event E1. Let (xk)k∈Z be the locations of

coalescence events (with x0 the smallest non-negative x such that Cx occurs). By definition

of the xk, for every k and for every a to the left of [[xk]]R, T[[xk]]R(Xa) = Txk
(Xa) < ∞. Now

for j < k, it necessarily holds that xj is to the left of [[xk]]R, since there can be only one

xk per level. Define ν(j, k) := Txk
(Xxj ). By definition of the walks Xa, we have for j < k,

t ≥ 0,

X
xj

t+ν(j,k) = Xxk
t . (5.9)

From this one can easily check that the ν(j, k) are additive; that is, for j < k < `, we have

ν(j, `) = ν(j, k) + ν(k, `). We note that for fixed j, ν(j, k) is increasing in k, because for

j < k < `, the walk Xj must hit [[xk]]R before it can hit [[x`]]R.
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ν(j, `) = Tx`
(Xxj ) (5.10)

= inf{t ≥ 0 : X
xj

t = x`} (5.11)

= ν(j, k) + inf{t ≥ 0 : X
xj

t+ν(j,k) = x`} (5.12)

= ν(j, k) + inf{t ≥ 0 : Xxk
t = x`} (5.13)

= ν(j, k) + Txk
(X`) (5.14)

= ν(j, k) + ν(k, `) (5.15)

Moreover, with probability 1, limj→−∞ ν(j, 0) = ∞ and limk→∞ ν(0, k) = ∞. This is

because the bi-infinite walk visits each level at least once. For some ε > 0 and δ > 0, there

is positive probability p > 0 that for all i in a given level (e.g. 1 ≤ i ≤ R), under the

measure P i
ω,A, the time to first jump is at least ε with probability ≥ δ. Becasue the A(θiω)

are stationary and ergodic under P , there are infinitely many levels in both directions where

this is the case, and in each of those levels the bi-infinite walk independently spends at least

ε units of time with Pω,A-probability at least δ. Thus, there are PA–a.s. infinitely many

levels to the left and right of 0 where the bi-infinite walk spends at least ε units of time, and

thus infinitely many j in both directions such that ν(j, j +1) ≥ ε. Let E ′
1 be the subset of E1

where this is also true, and assume the event E ′
1. Because all the Xxk agree with each other

in the sense of (  5.9 ), we may define a single, bi-infinite walk X = (X t)t∈R that agrees with

all of the Xxk . For t ≥ 0, let X t = Xx0
t . For t < 0, choose j < 0 such that ν(j, 0) > |t|, and

let Xt = X
xj

ν(j,0)−|t|. This definition is independent of the choice of j, because if j < k < 0,

then by ( 5.9 ) and the additivity of the ν(j, k), we have

X
xj

ν(j,0)−|t| = X
xj

ν(j,k)+ν(k,0)−|t| = Xxk

ν(k,0)−|t|. (5.16)

We may then define Nx :=
∫∞

−∞ 1Xt=xdt to be the amount of time the walk X spends at x.

Thus, Nx = lima→−∞ Nx(Xa).

Lemma 5.1.5. Both of the sequences (Xa)a∈Z and (Nx)x∈Z are stationary and ergodic.
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Proof. For a given environment, the cascade that defines X may be generated by a (count-

able) family U = (Ua
n)n∈N,a∈Z of i.i.d. uniform random variables on [0, 1]. For such a

collection, and an a ∈ Z, let Ua be the projection (Ua
n)n∈N. Given an environment ω, the

finite walk from a to level [[a + R]]R may be generated using the first several Ua
n . Let

ω̂x = (ωx, Ux), and ω̂ = (ω̂x)x∈Z. Define the left shift θ̂ by θ̂(ω̂) := (ω̂x+1)x∈Z. Then (ω̂x)x∈Z

is an i.i.d. sequence. We have X0 = X0(ω̂) and Xa = X0(θ̂aω̂). Similarly, N0 = N0(ω̂) and

Nx = N0(θ̂xω̂). So it suffices to show that X0 and N0 are measurable.

The measurability of X0 is obvious. For N0, let Ak,s,B,r be the event that:

(a) a coalescence event Cx,k (as defined in the proof of Lemma  5.1.4 ) occurs with −B ≤

x − kR < x < 0, so that X agrees with Xx to the right of x;

(b) N
[−B,B]
0 (Xx) ≥ s, where N

[−B,B]
0 is the amount of time the walk spends at x before

exiting [−B, B]; and

(c) none of the walks from sites a ∈ [−B, B] uses more than r of the random variables Ua
r .

This is the event that N0 is seen to be at least s by looking only within [−B, B] and only at

the first r uniform random variables at each site. The event Ak,s,B,r is measurable, because

it is a measurable function of finitely many random variables, and the event {N0 > s} is

simply the union over all r, then over all B, and then over all k of these events. Thus, N0

is measurable.

We now give the connection between N0 and the limiting velocity v(A).

Lemma 5.1.6. v(A) = 1
EA[N0] . Consequently, the walk is ballistic if and only if EA[N0] < ∞.

We note that a similar formula for the limiting speed in the ballistic case can be obtained

from [  36 , Theorem 6.12] for discrete-time RWRE on a strip, although the probabilistic in-

terpretation is less explicit, and an ellipticity assumption that does not hold for Dirichlet

RWRE is required.

Proof. By Birkhoff’s Ergodic theorem, for any c ∈ Z we have

lim
n→∞

1
n

n∑
k=c

Nk = EA[N0], PA − a.s. (5.17)
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Fix a ∈ Z. For large enough k, Nk(Xa) = Nk. We therefore get

lim
n→∞

1
n

n∑
k=c

Nk(Xa) = EA[N0], PA − a.s. (5.18)

It follows that

lim
n→∞

1
n

n∑
k=c

Nk(X) = EA[N0], Pa
A − a.s. (5.19)

By Lemma  5.1.3 , we get v(A) = 1
EA[N0] .

We know that limx→∞ N0(X−x) = N0. We’d like take expectations on both sides and

interchange the limit with expectations to get

lim
x→∞

EA[N0(X−x)] = EA[N0]. (5.20)

We can do this under the assumption that E0
A[N0] is finite.

Lemma 5.1.7. Assume E0
A[N0] is finite. Then

lim
x→∞

EA[N0(X−x)] = EA[N0]. (5.21)

Proof. Note that limx→∞ N0(X−x) = N0, PA–a.s. We wish to apply the dominated conver-

gence theorem, and we note that N0(X−x) ≤ max1−R≤z≤0 N0(Xz) for all x > R. To see that

the latter has finite expectation, we have
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EA

[
max

1−R≤z≤0
N0(Xz)

]
≤

0∑
z=1−R

EA [N0(Xz)] (5.22)

=
0∑

z=1−R

E [Eω,A[N0(Xz)]] (5.23)

=
0∑

z=1−R

E
[
Ez

ω,A[N0]
]

(5.24)

=
0∑

z=1−R

E
[
P z

ω,A(T0 < ∞)E0
ω,A[N0]

]
(5.25)

≤
0∑

z=1−R

E
[
E0

ω,A[N0]
]

(5.26)

= RE0
A[N0] (5.27)

< ∞ (5.28)

Now, applying the dominated convergence theorem gives us

lim
x→∞

E0
A[Nx] = lim

x→∞
E−x

A [N0] (5.29)

= lim
x→∞

EA[N0(X−x)] (5.30)

= EA

[
lim

x→∞
N0(X−x)

]
(5.31)

= EA[N0] (5.32)

We now have all the components of Proposition  5.1.2 .

Proof of Proposition  5.1.2 . (1) We claim that EA[N0] ≤ E0
A[N0]. If E0

A[N0] = ∞, this claim

is trivial. Otherwise, apply Lemma  5.1.7 along with the fact that E−x
A [N0] ≤ E0

A[N0].

Now if E0
A[N0] < ∞, it follows that EA[N0] < ∞. By Lemma  5.1.6 , this means v(A) > 0.

(2) is just (1) applied to the discrete-time case (see Remark  2.4.1 on page  41 ).
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5.2 Proof of main acceleration theorem

We now prove the main theorem of this chapter.

Theorem 5.2.1 (Theorem  2.4.1 ). Assume κ1 6= 0. Then PG has essential slowing if and

only if |κ1| ≤ 1.

Proof of Theorem  2.4.1 . Assume without loss of generality that κ1 > 0. We will first show

that if κ1 > 1, then there exists a Bouchet acceleration function A such that v(A) > 0.

Assume κ1 > 1. Recall from Proposition  5.1.2 (1), that if E0
G,A[N0] < ∞, then v(A) > 0,

where Nx =
∫∞

0 1Xt=xdt is the amount of time the walk spends at x. We will construct a

Bouchet acceleration function A such that v(A) > 0. Recall that for x < y, N ′
x,y is the

number of backward trips from [y, ∞) to (−∞, x]. Choose M large enough that E0
G[N ′

−M,0 +

N ′
0,M ] < ∞ (This can be done by Proposition  4.2.5 ). Recall also that for a set S ⊆ Z, and

for x ∈ S, we have defined NS
x to be the amount of time a walk spends at x before leaving

S for the first time. For any environment ω, let A(ω) be the distribution of any positive

random variable with mean µA(ω) = 1
E0

ω

[
N

[−M,M ]
0

] . In this case, we have

E0
ω,A[N0] = E0

ω[N0] µA(ω) (5.33)

= E0
ω

[
N

[−M,M ]
0

]
E0

ω

1 + #


excursions
to [−M, M ]c
and back to 0


 µA(ω) (5.34)

= E0
ω

1 + #


excursions
to [−M, M ]c
and back to 0


 (5.35)

≤ 1 + E0
ω[N ′

−M,0 + N ′
0,M ] (5.36)

Taking expectations with respect to PG on both sides gives us E0
G,A[N0] < ∞. By Propo-

sition  5.1.2 (1), v(A) > 0 for this A.

Next, we show that if κ1 ≤ 1, then v(A) = 0 for any Bouchet acceleration function A.

Assume κ1 ≤ 1, and let A be a Bouchet acceleration function that depends only on the

environment ω on [−M, M ]. We wish to show that v(A) = 0.
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This part of the proof makes use of the constructions in Section  5.1 . We let the “space

of cascades” and the measures and random variables on that space be as defined there. By

Lemma  5.1.6 , v(A) = 0 if EG,A
[
N0
]

= ∞.

Now the distribution of the jump time at the site −M −R is A(θ−M−Rω), which depends

only on ω≤−R.

For x < y, let Nx,y be the number of trips from y to x that the walk X takes. In other

words, Nx,y = lima→−∞ Na
x,y. Now let T [1−R,0] be the first time the walk X hits [1−R, 0], and

let A = XT [1−R,0]
be the location where X first hits [1 − R, 0]. Then N−M−R,A = NA

−M−R,A.

We have

Eω,A
[
N−M−R

]
= Eω

[
N−M−R

]
µA(θ−M−Rω) (5.37)

≥ Eω

[
N−M−R,A

]
µA(θ−M−Rω) (5.38)

= Eω

[
NA

−M−R,A

]
µA(θ−M−Rω) (5.39)

≥ Eω

[
N0

−M−R,01{A=0}
]

µA(θ−M−Rω) (5.40)

= Eω

[
N0

−M−R,0

]
Pω(A = 0)µA(θ−M−Rω) (5.41)

= E0
ω [N−M−R,0] Pω(A = 0)µA(θ−M−Rω), (5.42)

where (  5.41 ) comes from the fact that under Pω, A depends only on the finite walks starting

from y for y ≤ −R, while X0 depends only on finite walks starting from sites y ≥ 0. Now

the terms Pω(A = 0) and µA(θ−M−Rω) in ( 5.42 ) are determined by ω≤−R. Taking conditional

expectations on both sides therefore gives us, with probability 1,

EG
[
Eω,A

[
N−M−R

]
ω≤−R

]
≥ EG

[
E0

ω[N−M,0] ω≤−R
]

Pω(A = 0)µA(θ−M−Rω) (5.43)

Claim  4.2.4.1 from the proof of Proposition  4.2.4 gives us

EG
[
E0

ω[N−M−R,0] ω≤−R
]

= ∞, PG − a.s. (5.44)
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Hence the right hand side of ( 5.43 ) is infinite, PG–a.s. Taking expectation with respect to

PG in ( 5.43 ), we get EG,A
[
N−M−R

]
= ∞. By stationarity of the {Nx}x∈Z, it follows that

EG,A
[
N0
]

= ∞, and by Lemma  5.1.6 , v(A) = 0.
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6. OPEN QUESTIONS

The purpose of this chapter is to gather open questions and conjectures that are presented

throughout this thesis.

6.1 Questions and conjectures about directional transience

The first conjecture says that a positive annealed probability of transience in one direction

` implies positive annealed probability of transience in all directions in a neighborhood of `.

Conjecture (Conjecture  2.2.3 ). Let P0 be the law of an i.i.d. RWRE on Zd, and let Sd−1

be the set of a unit vectors in Rd. Then for all ` ∈ Sd−1, if P0(A`) > 0, then there exsts a

neighborhood U ⊆ Sd−1 such that P0(A`′) > 0 for all `′ ∈ U .

We defined A0
` to be be the event that limn→∞ Xn · ` = ∞, but there is no neighborhood

U ∈ Sd−1 containing ` such that for all `′ ∈ U , limn→∞ Xn · `′ = ∞. This allows us to restate

the above conjecture in a simple way.

Conjecture (Conjecture  2.2.3 ). Let P0 be the law of an i.i.d. RWRE on Zd. Then for all

` ∈ Sd−1, P0(A0
`) = 0.

It also allows us to strengthen the conjecture.

Conjecture (Conjecture  3.4.1 ). Let P0 be the law of an i.i.d. RWRE on Zd. Then

P0 (⋃`∈Sd−1 A0
`) = 0.

We proved Conjecture  2.2.3 for RWDE with bounded jumps, but Conjecture  3.4.1 remains

open even for nearest-neighbor RWDE on all Zd, d ≥ 2.

6.2 Questions and conjectures about ballisticity

To prove Theorem  2.3.6 , we showed first that κ0 ≤ 1 implies that the limiting speed is

0 due to finite trapping, and second that κ1 ≤ 1 implies that the limiting speed is 0 due to

large-scale backtracking. It was then necessary to show that if neither effect on its own is

strong enough to cause zero speed, then the two effects are independent enough that they
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cannot combine to cause zero speed, and thus that the walk is ballistic. Having shown this

in the case of RWDE, we ask whether it is true for all RWRE on Z with bounded jumps.

Recall Equation  2.1 , which is true for every environment ω on Z and every M > 0.

E0
ω[N0] = E0

ω

[
N

[−M,M ]
0

]
E0

ω

[
#
{Times exiting [−M, M ]

and then returning to 0

}]
. (2.1)

If each of the terms on the right has finite expectation, we ask whether the product has

finite expectation.

Question (Question  2.3.1 ). Let P be a probability measure on ΩZ satisfying ( C1 ), (  C2 ),

( C3 ), and ( C4 ), under which both terms on the right of ( 2.1 ) have finite expectation for all

M ; that is, E
[
E0

ω

[
N

[−M,M ]
0

]]
< ∞ and E

[
E0

ω

[
#
{Times exiting [−M, M ]

and then returning to 0

}]]
< ∞. Does

it necessarily follow that E0[N0] = E[E0
ω[N0]] < ∞ (and thus that the walk is ballistic)?

We now ask another question about Equation  2.1 , which we have not asked in the body

of the thesis.

Question 6.2.1. Let P be a probability measure on ΩZ satisfying (  C1 ), (  C2 ), (  C3 ), and

( C4 ). If there is some M for which each term on the right side of Equation  2.1 has finite

expectation under P , is it necessarily true that each of these terms has finite expectation for

all M?

A well known conjecture in d-dimensional RWRE states that under a uniform ellipticity

assumption, directional transience implies ballisticity. Sabot and Tournier in [  15 ] suggest

a related conjecture that applies to all RWRE, uniformly elliptic or not. Our concept of

“essential slowing” allows us to formally state this conjecture.

Conjecture (Conjecture  2.4.2 ). For irreducible, iid, directionally transient RWRE in d ≥ 2,

essential slowing is impossible. That is, there always exists a Bouchet acceleration function

A such that v(A) 6= 0.

The concept of essential slowing also allows us to ask a question related to Question  2.4.1 ,

but for d-dimensional RWRE.
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Question (Question  2.4.1 ). Let P be a probability measure on ΩZd satisfying (  C1 ), (  C2 ),

and ( C3 ), nd suppose there is an almost-sure limiting direction. Suppose essential slowing

does not occur, and also that E

[
E0

ω

[
#
{

Times exiting [−M, M ]d
and then returning to 0

}]]
< ∞ for all M . Does

it necessarily follow that the walk is ballistic?

In Proposition  4.2.1 , we gave an algorithm to compute κ0 given L, R, and the αi. We

also know that given the set N , κ0 is an elementary function (a minimum of finitely many

positive integer combinations) of the αi.

Question 6.2.2. Find an algorithm to compute, given N , the formula for κ0 as an elemen-

tary function of the αi.
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A. AUXILIARY RESULTS

This appendix contains some proofs of minor results in order to save space in the body of

the paper. The first is a weak 0-1 law.

Theorem (Kalikow’s 0-1 Law). Let P0 be the annealed measure of a RWRE on Zd satisfying

assumptions ( C1 ), ( C2 ), and ( C3 ). Then for every ` ∈ Sd−1, P0(A` ∪ A−`) ∈ {0, 1}.

A rudimentary version of the theorem for two dimensions, using a uniform ellipticity

assumption and assuming ` = (0, 1), was first given by Kalikow in [  30 ]. Improvements were

made in [ 37 ] (allowing general d and general `) and [ 23 ] (removing the uniform ellipticity

assumption), but the overall structure of the argument has changed very little. The proof

in [ 23 ] does not use the nearest-neighbor assumption, except in a lemma that we now state

and re-prove using the same ideas but without the nearest-neighbor assumption.

Lemma A.0.1. Let P0 be the annealed measure of a RWRE on Zd satisfying assumptions

( C1 ), ( C2 ), and ( C3 ). Then for every ` ∈ Sd−1 and a < b ∈ R,

P0(#{n ≥ 0 : Xn · ` ≥ a} = ∞, T `
≥b = ∞) = 0. (A.1)

Proof. Observe that on the event #{n ≥ 0 : Xn · ` ≥ a} = ∞, it is either the case that for

some y with a ≤ y · ` < b, Xn = y infinitely often, or that Xn hits infinitely many vertices in

the slab {a ≤ x · ` < b}. It therefore suffices to show that the intersection of each of these

events with the event T `
≥b = ∞ has probability 0.

First, fix y with a ≤ y · ` < b. By the irreducibility assumption ( C2 ), P y
ω(T `

≥b < T̃y) > 0

for almost every ω. For such an ω, the strong Markov property implies that the quenched

probability of hitting y at least n times before T `
≥b is no more than P y

ω(T̃x < T `
≥b)n−1, which

approaches 0 as n → ∞. Thus, the (quenched or annealed) probability of hitting y infinitely

many times without ever reaching the half-space {x · ` ≥ b} is 0. Summing over countably

many y still gives a probability of 0.

Now consider the event that infinitely many points in {a ≤ x · ` < b} are hit. By

assumption ( C2 ), each of these points x has a possible path (in the notation introduced in
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the proof of Theorem  2.1.1 ) to {x · ` ≥ b}. By shift-invariance, there is some N > 0 and

ε > 0 such that each x in {a ≤ x · ` < b} has a possible path of length no more than

N and with annealed probability at least ε. Thus, in order to hit infinitely many points

in {a ≤ x · ` < b}, the walk must hit the vertex sets of infinitely many disjoint paths to

{x · ` ≥ b}, each of which has length no more than N and annealed probability at least ε.

Now by the i.i.d. assumption ( C1 ), each time the walk hits an unexplored vertex set of such

a path, its probability, conditioned on its entire past, of immediately taking (the rest of)

that path is at least ε. The probability of hitting vertex sets of n unique such paths before

hitting {x · ` ≥ b} is therefore no more than (1 − ε)n−1, which approaches 0 as n → ∞.

Thus, the annealed probability of hitting the vertex sets of infinitely many disjoint paths to

{x · ` ≥ b}, each with length no more than N and annealed probability at least ε, without

ever reaching {x · ` ≥ b}, is 0. Since these paths have no more than N vertices in them,

hitting infinitely many sites in {a ≤ x · ` < b} requires hitting the disjoint vertex sets of

infinitely many such paths, and therefore the annealed probability of hitting infinitely many

sites in {a ≤ x · ` < b} without ever reaching {x · ` ≥ b} is 0. This gives us (  A.1 ).

We outline a proof of Proposition  4.1.1 .

Recall that we have defined τ0 := 0, and for k ≥ 1, τk := min{n > τk−1 : Xn >

Xj for all j < n, Xn ≤ Xj for all j > n}. The proposition we are to prove is the following.

Proposition (Proposition  4.1.1 ). Let P be a probability measure on ΩZ satisfying (  C1 ),

( C2 ), and ( C3 ). Then the following hold:

1. There is a P0–almost sure limiting velocity

v := lim
n→∞

Xn

n
= E0[Xτ2 − Xτ1 ]

E0[τ2 − τ1]
, (A.2)

where the numerator is always finite, and the fraction is understood to be 0 if the

denominator is infinite.

2. limx→∞
T≥x

x
= 1

v
, where 1

v
is understood to be ∞ if v = 0.

As we mentioned after the statement of the proposition, the recurrent case is handled by

[ 34 ] (with slight modifications). Therefore, we may assume the walk is transient to the right
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almost surely. It is standard (see, for example, [ 35 ], [  37 ]) to prove a LLN like (  A.2 ) under

an assumption of directional transience by the following steps:

(a) Show that Xτk

k
approaches E0[Xτ2 − Xτ1 ]

(b) Show that τk

k
approaches E0[τ2 − τ1]

(c) Show that E0[Xτ2 − Xτ1 ] < ∞

(d) Conclude that the limit ( A.2 ) holds for the subsequence
(

Xτk

τk

)
k

(e) Use straightforward bounds that come from the definitions of the τk to get the limit for

the entire sequence
(

Xn

n

)
n
.

Part (2) then follows from a comparison of x
T≥x

with a subsequence of Xn

n
.

The definition of the regeneration times is precisely set up so that both the sequences

(τk − τk−1)k≥2 and (Xτk
−Xτk−1)k≥2 are i.i.d. sequences, so proving the limits (a) and (b) is a

matter of tracing how the i.i.d. feature follows from the definitions and applying the strong

law of large numbers. In fact, arguing as in [  35 , Lemma 1], one can show that the triples

ξn :=
(
τn − τn−1 , (Xτn−1+i − Xτn−1)τn−τn−1

i=1 , (ωx)Xτn −1
x=Xτn−1

)

are i.i.d. under P0 = P × P 0
ω for n ≥ 2.
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We show the finiteness in (c) using arguments along the lines of those in [ 38 , Lemma

3.2.5]. 

1
 For z ≥ 0, let Bz be the event that for some k, Xτk

∈ [zR, (z + 1)R). Then

P0(Bz) = E
[
P 0

ω(Bz)
]

≥ E

[
R−1∑
i=0

P 0
ω(T[zR,(z+1)R) = zR + i)P zR+i

ω (T<zR+i = ∞)
]

=
R−1∑
i=0

E
[
P 0

ω(T[zR,(z+1)R) = zR + i)P zR+i
ω (T<zR+i = ∞)

]

=
R−1∑
i=0

P0(T[zR,(z+1)R) = zR + i)PzR+i(T<zR+i = ∞)

= P0(T<0 = ∞), (A.3)

where the second to last equality comes from the fact that ω<zR is independent of ω≥zR+i,

and the last comes from translation invariance and the fact that T[zR,(z+1)R) < ∞ P0–a.s. On

the other hand, let B2
z be the event that for some k ≥ 2, Xτk

∈ [zR, (z + 1)R). Then since

limz→∞ P0(Xτ1 ≥ zR) = 0, we have

lim inf
z→∞

P0(Bz) = lim inf
z→∞

P0(B2
z ).

= lim inf
z→∞

∑
y≥1

P0
(
B2

z , Xτ1 = y
)

= lim inf
z→∞

∑
y≥1

P0 (∃k ≥ 2 : Xτk
− Xτ1 ∈ [zR − y, (z + 1)R − y), Xτ1 = y)

= lim inf
z→∞

∑
y≥1

P0 (Xτ1 = y)P0 (∃k ≥ 2 : Xτk
− Xτ1 ∈ [zR − y, (z + 1)R − y))

≥ lim inf
z→∞

∑
y≥1

P0 (Xτ1 = y)P0 (∃k ≥ 2 : Xτk
− Xτ1 = zR) .

But recall that by the renewal theorem (and by our irreducibility assumption ( C2 )),

lim
z→∞

P0 (∃k ≥ 2 : Xτk
− Xτ1 = zR) = 1

E0 [Xτ2 − Xτ1 ] ,

1
 ↑ Because we have assumed almost-sure transience to the right, the measure Q introduced there is unnec-

essary. Another difference is that in our model, transience to the right does not imply that every vertex to
the right of the origin is hit. So instead of studying the probability, for a given x, that a regeneration occurs
at site x, we focus on the probability that the regeneration occurs on a given interval of length R.
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and hence, by dominated convergence,

lim
z→∞

P0(Bz) =
∑

y≥1 P0 (Xτ1 = y)
E0 [Xτ2 − Xτ1 ] = 1

E0 [Xτ2 − Xτ1 ] . (A.4)

Comparing ( A.3 ) and ( A.4 ), we conclude that

E0 [Xτ2 − Xτ1 ] ≤ 1
P0(T<0 = ∞) < ∞.

This gives us the finiteness in (c), and (d) and (e) easily follow.

We now prove a lemma that is used to justify arguments where we replace transition

probabilities at a particular site x with an almost-sure jump to another site y.

Lemma A.0.2. Consider an environment ω on a finite or countable vertex set V . Assume

the Markov chain is irreducible under ω. Let A and B be disjoint finite subsets of V , with

A nonempty. Now let x ∈ V − A ∪ B and y ∈ V − B, with P y
ω(TA < TB) ≥ P x

ω (TA < TB).

Suppose ω′ is an environment that agrees with ω at all sites other than x but has ω′(x, y) = 1.

Then for all z ∈ V , P z
ω′(TA < TB) ≥ P z

ω(TA < TB)

Proof. We first assume that V is finite. For z ∈ V , let f0(z) = P z
ω(TA < TB). Then, for

i ≥ 1, define

fi(z) :=


∑

w∈V ω′(z, w)fi−1(w) z /∈ A ∪ B

0 z ∈ B

1 z ∈ A

.

Now for z 6= x, f1(z) = f0(z), since f is harmonic with respect to ω. On the other

hand, f1(x) = f0(y) ≥ f0(x). Thus, f1(z) ≥ f0(z) for all z. A straightforward induction

now shows that for all z ∈ V , the sequence (fi(z)) is increasing and bounded. Hence

f(z) := limi→∞ fi(z) exists, and f(z) ≥ f0(z) for all z.

We will have completed the proof if we can show that f(z) = P z
ω′(TA < TB). One can

easily check that f is ω′-harmonic on V − A ∪ B, identically 1 on A, and identically 0 on B.

The function z → P z
ω′(TA < TB) has these same properties, and by the maximum principle

there is only one such function.
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Now suppose V is infinite, and let z0 ∈ V . Take any finite subset S ⊂ V containing A,

B, x, y, and z0, and take one “sink” vertex ∂ not in S. For z, w ∈ S, define ω∗(z, w) :=

P z
ω(T̃S < ∞, XT̃S

= w), and ω∗(z, ∂) := P z
ω(T̃S = ∞). Define (ω′)∗ similarly. Then for all

z ∈ S,

P z
ω(TA < TB) = P z

ω∗(TA < TB). (A.5)

To see this, it is straightforward to check that z → P z
ω(TA < TB) is harmonic with respect

to ω∗ on S − {A ∪ B}, identically 1 on A, and identically 0 on B ∪ {∂}. The function

z → P z
ω∗(TA < TB) has these same properties, and there is only one such function. Similarly,

P z
ω′(TA < TB) = P z

(ω′)∗(TA < TB). (A.6)

We want to show that (ω′)∗ has the same properties relative to ω∗ that ω′ has relative to

ω, so that we may apply the conclusion from the finite case with (ω∗)′ := (ω′)∗. That is, we

need to show that

(a) For z 6= x, and w ∈ S ∪ {∂}, we have (ω′)∗(z, w) = ω∗(z, w).

(b) (ω′)∗(x, y) = 1.

The statement (b) comes from the fact that ω′(x, y) = 1. The statement (a) says that

P z
ω′(T̃S < ∞, XT̃S

= w) = P z
ω(T̃S < ∞, XT̃S

= w). This is true because these probabilities do

not depend on the environment at x, and ω ≡ ω′ everywhere else.

We may now apply the finite case to the measures ω∗ and (ω′)∗, concluding that P z0
(ω′)∗

(TA <

TB) ≥ P z0
ω∗(TA < TB). By ( A.5 ) and (  A.6 ), we get P z0

ω′ (TA < TB) ≥ P z0
ω (TA < TB). Since z0

was arbitrary, this is enough to conclude the argument.
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B. CALCULATING κ0

In the body of the paper, we gave an algorithm to compute κ0, but this algorithm grows

in complexity with the smallest positive αi. Here, we prove Proposition  4.2.2 , which asserts

that given an underlying directed graph, κ0 is a minimum of finitely many positive integer

combinations of the αi. Although we do not have a general algorithm to find the formula, we

give several examples where we are able to do so. These examples exhibit various important

features that sets S attaining βS = κ0 may have. We also prove Proposition  B.0.2 , showing

that κ0 and κ1 are unrestricted by each other. We begin with the following lemma.

Lemma B.0.1. Let T ⊆ Nk be a set of ordered k-tuples of positive integers. Let � be the

natural partial ordering on Nk, (n1, . . . , nk) � (n′
1, . . . , n′

k) if ni ≤ n′
i for all i. Then there is

a finite subset T∗ ⊆ T such that for all x ∈ T, there is an x∗ ∈ T∗ such that x∗ � x.

Proof. We prove this by induction on k. The base case k = 1 is trivial; a 1-tuple is sim-

ply a positive integer, and we can let T∗ := {minT}. Now suppose the result is true for

all subsets of Nk, and let T ⊆ Nk+1. Now let T := {(n1, . . . , nk) : (n1, . . . , nk, nk+1 ∈

T for some nk+1 ∈ N} be the projection of T onto Nk, and for n ∈ N define T(n) :=

{(n1, . . . , nk) : (n1, . . . , nk, n) ∈ T}. Thus, T = ⋃∞
n=1 T(n). Now by the inductive hypothesis,

there is a finite set T∗ ⊆ T such that every element of T is greater than some element of T∗.

Since T∗ is finite, T∗ ⊆ ⋃N
n=1 T(n) for some N . Applying the inductive hypothesis to each

T(n) gives us sets T∗(n) such that for all x ∈ T(n), there is a x∗ ∈ T∗(n) such that x∗ � x.

Now define T∗ := ⋃N
n=1{(n1, . . . , nk, n) : (n1, . . . , nk) ∈ T∗(n)}. It is easy to see that

this is a finite subset of T. Now suppose (n1, . . . , nk, nk+1) ∈ T. Suppose nk+1 < N . Then

(n1, . . . , nk) ∈ T(nk+1), so there exists (n∗
1, . . . , n∗

k) ∈ T∗(nk+1) with n∗
i ≤ ni for 1 ≤ i ≤ k.

Since (n∗
1, . . . , n∗

k, nk+1) ∈ T∗, we are done.

On the other hand, suppose nk+1 ≥ N . Then since (n1, . . . , nk) ∈ T, there exists

(n∗
1, . . . , n∗

k) ∈ T∗ such that n∗
i ≤ ni for all i = 1, . . . , k. Now (n∗

1, . . . , n∗
k) ∈ T(n) for

some n ≤ N ≤ nk+1. Hence there exists (n∗∗
1 , . . . , n∗∗

k ) ∈ T∗(n) such that n∗∗
i ≤ n∗

i for all

1 ≤ i ≤ k. Thus (n∗∗
1 , . . . , n∗∗

k , n) ∈ T∗ with n∗∗
i ≤ ni for 1 ≤ i ≤ k, and n ≤ nk+1.

We are now able to prove Proposition  4.2.2 .
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Proof of Proposition  4.2.2 . For any finite set S ⊂ Z, βS is a sum of weights of edges exiting

β. The weight of each edge is αi for some i, and each αi must be included at least once, as

the weight of an edge exiting either the rightmost or leftmost point of S. Thus,

βS =
R∑

i=−L

xiαi

where xi = xi(S) := #{z ∈ S : z + i /∈ S} ≥ 1.

Now let T ⊂ NR+L be the set of ordered tuples (y−L, . . . , yR) such that there is some

finite set S with xi(S) = yi for all −L ≤ i ≤ R. Thus,

κ0 = inf


R∑

i=−L

yiαi : (y−L, . . . , yR) ∈ T

 .

Applying Lemma  B.0.1 , we get a finite set T∗ ⊆ T such that for any S, there is a (y−L, . . . , yR) ∈

T∗ with yi ≤ xi(S) for all −L ≤ i ≤ R. Thus,

κ0 = min


R∑

i=−L

yiαi : (y−L, . . . , yR) ∈ T∗

 . (B.1)

This is a minimum of finitely many positive integer combinations of the αi.

We now give examples where we can find the formula for κ0. Recall that κ0 := inf{βS :

S ⊂ Z finite, strongly connected}, where βS is the sum of edge weights leaving the set S.

By shift invariance of the graph G, it suffices to consider sets S whose leftmost point is 0.

We already showed in Claim  4.2.1.1 that κ0 ≤ d+ + d−. We can also give a general

lower bound: κ0 ≥ c+ + c−. This is because any strongly connected set will have weight at

least c+ exiting from the rightmost point and weight at least c− exiting from the leftmost

point. Therefore, every strongly connected set S has βS ≥ c+ + c−, and taking the infimum

preserves the inequality. So we have the bounds

c+ + c− ≤ κ0 ≤ d+ + d−. (B.2)

Example B.0.1. L = R = 1.
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In this case, d+ = c+ = α1, and d− = c− = α−1, so (  B.2 ) immediately implies κ0 =

α1 +α−1. This can also be seen by noting that the only strongly connected sets are intervals,

which all have the same exit weight.

Example B.0.2. α0 > 0.

In this case, {0} is already a strongly connected set, so ( B.2 ) gives κ0 = β{0} = c+ + c−.

Example B.0.3. L = 2, R = 3, αi = 0 for i = −1, . . . , 2.

In this case, we also have κ0 = d++d−. Let S be a strongly connected finite set of vertices

with left endpoint 0. Then S contains 3, since there must be a vertex reachable from 0 in

one step, and by assumption there are no vertices to the left of 0. Also, S contains 2, since

0 must be reachable in one step from a vertex in S. Likewise, 2 must then also be reachable,

and since −1 /∈ S, S must contain 4 as well. Now since a vertex must be reachable from 3,

S must contain either 1 or 6. Suppose S contains 1. Then S contains [0, 4], which has exit

weight d+ + d−, and by Claim  4.2.1.2 , βS ≥ β[0,4] = d+ + d−. On the other hand, suppose

S does not contain 1. Then it contains 6. If S also contains 5, then S contains the interval

[2, 6], which is shift-equivalent to [0, 4]. If S contains neither 1 nor 5, then it contains exactly

the set {0, 2, 3, 4, 6} and possibly vertices to the right and/or left of this set, so by Claim

 4.2.1.2 , βS ≥ β{0,2,3,4,6}. One can easily check that in this case, β{0,2,3,4,6} = d+ + d−.

We have calculated κ0 without even showing that either [0, 4] or {0, 2, 3, 4, 6} is strongly

connected, but in fact they both are. Consider the path 0 → 3 → 1 → 4 → 2 → 0 in [0, 4]

and the path 0 → 3 → 6 → 4 → 2 → 0 in {0, 2, 3, 4, 6}. Thus, even when κ0 = d+ + d−, a

minimizing set S for βS need not be an interval (although a large enough interval will always

be a minimizing set).

Example B.0.4. L = 1, R ≥ 2, α0 = 0 α1 > 0, αi = 0 for i = 2, . . . , R − 1.

In this case, we show that κ0 = 2αR + α1 + α−1; thus if R > 2, then κ0 < d+ + d−. Let

S be a strongly connected set with left endpoint 0. Since 0 must be reachable from another

point in S, we have 1 ∈ S. Now by Claim  4.2.1.2 , this implies βS ≥ β{0,1} = 2αR + α1 + α−1.

The set {0, 1} is strongly connected, and hence κ0 = β{0,1} = 2αR + α1 + α−1.

This example lets us show that κ0 and κ1 are independent in the sense that no information

about either may be inferred from the other.
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Proposition B.0.2. The ordered pair (κ0, κ1) may take on any value in the first quadrant

of R2.

Proof. Let a, b > 0. We will show that L, R, and the αi may be chosen such that κ0 = a and

κ0 = b. Let L = 1, and let R ≥ 2 be large enough that a
2 > b

R
. Then let α1 = α−1 = a

2 − b
R

,

αR = b
R

, and all other αi = 0. Then κ1 = −α−1 + α1 + RαR = b, and by Example  B.0.4 ,

κ0 = a.

Example B.0.5. L = R = 2, α−1, α1 > 0, α0 = 0.

There are two possibilities. Let S be a strongly connected set with leftmost point 0. If

1 ∈ S, then by Claim  4.2.1.2 , βS ≥ β{0,1} = d+ + d−. On the other hand, if 1 /∈ S, then

2 ∈ S, and by Claim  4.2.1.2 , βS ≥ β{0,2} = α−2 + 2α−1 + 2α1 + α2. Since both {0, 1} and

{0, 2} are strongly connected, κ0 may be either d+ + d− or α−2 + 2α−1 + 2α1 + α2, depending

on whether α−1 + α1 or α−2 + α2 is smaller. That is,

κ0 = min(2α−2 + α−1 + α1 + α2, α−2 + 2α−1 + 2α1 + α2)

= α−2 + α−1 + α1 + α2 + min(α−1 + α1, α−2 + α2)

= min(β{0,1}, β{0,2}).

Example B.0.6. L = 6, R = 3, α2 > 0, αi = 0 for i = −5, . . . , 1.

If S is a finite, strongly connected set with 0 the leftmost vertex, then 6 ∈ S, since 0 must

be reachable from the right. We consider possible sets S ∩ [0, 6]. There are 32 subsets of [0, 6]

that contain 0 and 6; however, S must contain either 2 or 3, since there must be edges from

0 to other sets in S and nothing to the left of 0 is allowed. Similarly, if S contains 1, then

it must contain either 3 or 4, and if S contains 2, then it must contain either 4 or 5. This

eliminates 12 of the 32 possibilities, leaving 20 possibilities for S ∩ [0, 6]. Of these, we first

consider two candidates, {0, 3, 6} and {0, 2, 4, 6}. Both of these are strongly connected, and

so β{0,3,6} = 2α−6+3α2+α3 and β{0,2,4,6} = 3α−6+α2+4α3 both provide upper bounds for κ0.

Depending on the values of the αi, either can be lower than the other. The set {0, 2, 3, 4, 6}

is also strongly connected, but has β{0,2,3,4,6} = 4α−6 + 2α2 + 3α3. Thus, if α2 ≥ α3, then

β{0,2,4,6} < β{0,2,3,4,6}, and if α2 ≤ α3, then β{0,3,6} < β{0,2,3,4,6}. One can simply check that
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other 17 of the possible sets D = S ∩ [0, 6] either have βD > β{0,3,6} for all possible values

of the αi, βD > β{0,2,4,6} for all possible values of the αi, or βD > β{0,2,3,4,6} for all possible

values of the αi. By Claim  4.2.1.2 , this implies that βS ≥ min(β{0,3,6}, β{0,2,4,6}). Therefore,

κ0 = min(2α−6 + 3α2 + α3, 3α−6 + α2 + 4α3)

= min(β{0,3,6}, β{0,2,4,6}).

In all five of the above examples, there is always a set S minimizing βS that represents a

single, simple loop. The exit time from S is the first time the walk stops repeating this loop.

Thus, if κ0 ≤ 1, then there is a single loop that the walk is expected to repeat infinitely

many times before deviating from it.

In the nearest-neighbor case, treated in Example  B.0.1 , κ0 ≤ 1 means the walk is expected

to repeat the loop 0 → 1 → 0 infinitely many times before ever taking a different step (and,

likewise, the walk is expected to repeat the loop 0 → −1 → 0 infinitely many times before

ever stepping to 1). This does not mean the only finite traps are sets of the form {x, x + 1}.

For example, it is also the case that β[0,5] ≤ 1, so that the walk is expected to spend an

infinite amount of time in [0, 5] before leaving it, regardless of the precise path (and even if

transition probabilities at sites 1,2,3, and 4 are conditioned to be moderate). But there are

no finite traps “worse” (in the sense of finite moments of quenched expected exit time) than

the set {0, 1}.

In fact, for nearest-neighbor RWDE on Zd, pairs of adjacent vertices are always the worst

finite traps, and if κ0 ≤ 1, then the walk is expected to bounce back and forth between 0

and one other vertex infinitely many times before doing anything else [ 15 ].

Our other examples so far match this trend in a sense; although the worst traps are not

necessarily pairs of vertices, the worst traps are loops, and κ0 ≤ 1 means there is a loop that

the walk is expected to iterate infinitely many times before doing anything else.

• In Example  B.0.2 , one such loop is 0 → 0.

• In Example  B.0.3 , one such loop is 0 → 3 → 6 → 4 → 2 → 0.

• In Example  B.0.4 , one such loop is 0 → 1 → 0.
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• In Example  B.0.5 , one such loop is 0 → 1 → 0 (if β{0,1} ≤ 1) or 0 → 2 → 0 (if

β{0,2} ≤ 1).

• In Example  B.0.6 , one such loop is 0 → 3 → 6 → 0 (if β{0,3,6} < 1) or 0 → 2 → 4 → 6

(if β{0,2,4,6} < 1).

Our next example shows that unlike in the nearest-neighbor case on Zd, there are pa-

rameters where the strongest finite traps never represent just one loop. In particular, one

can find cases where κ0 ≤ 1, so there are finite traps in which the walk is expected to be

stuck for an infinite amount of time, but there is no single loop that the walk is expected to

iterate infinitely many times before deviating from it.

Example B.0.7. L = R = 2, α−1 = α0 = 0, α1 > 0.

A finite, strongly connected set with 0 as its leftmost point will necessarily contain 2, since

0 must be reachable from the right. Thus, by claim  4.2.1.2 , for any finite, strongly connected

S, βS ≥ min(β{0,1,2}, β{0,2}). Now {0, 2} and {0, 1, 2} are already strongly connected, so

κ0 = min(β{0,1,2}, β{0,2}). The minimum may be achieved on either set, depending on the αi.

We now examine a case where κ0 ≤ 1, but there are no loops that the walk is expected

to iterate infinitely many times before doing anything else. Suppose α−2 = α2 = 1
9 , and

α1 = 1
2 . Then β{0,2} = 11

9 > 1, and β{0,1,2} = 17
18 < 1. Thus, κ0 = 17

18 , and a walk started

from 0 is expected to spend an infinite amount of time in {0, 1, 2} before exiting. However,

because β{0,2} = 11
9 > 1, the expected exit time from {0, 2} is finite, so the walk is not

expected to iterate the loop 0 → 2 → 0 infinitely many times before deviating from it.

Moreover, the walk is not expected to iterate the loop 0 → 1 → 2 → 0 infinitely many

times before deviating it, but to see this, we must use the original formulation of Tournier’s

lemma from [  29 ]. The formulation there is in terms of sets of edges rather than vertices. The

edges that are not in the loop 0 → 1 → 2 but have tails in the vertex set touched by this

loop have weights that add up to 19
18 > 1. Hence [ 29 , Theorem 1] implies that the expected

time to deviate from this set of edges (and thus from the loop 0 → 1 → 2 → 0) is finite.

Nevertheless, the weight exiting {0, 1, 2} is 17
18 < 1

2 , so the walk is expected to stick to the

vertex set {0, 1, 2}, and thus to the pair of loops 0 → 2 → 0 and 0 → 1 → 2 → 0, for an

infinite amount of time before doing anything else. See Figure  B.1 .
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Figure B.1. The top shows the weights exiting the loop 0 → 2 → 0. The
middle shows the weights exiting the loop 0 → 1 → 2 → 0. The bottom shows
the weights exiting the union of these two loops, or the set {0, 1, 2}.
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Note that in this example, β{0,1,2} < β{0,2}. This shows that in Claim  4.2.1.2 , the as-

sumption that x is to the right or left of x is really needed.

Our next example presents a similar phenomenon: the walk is not expected to get stuck

in any one loop for an infinite amount of time, but the walk is expected to spend an infinite

amount of time in a set of vertices. In the previous example, the vertex set S minimizing

βS can have all of its vertices hit by one loop, the loop 0 → 1 → 2 → 0, but this loop alone

does not have a trapping effect as strong as the whole set S. In the next example, there is no

single loop that can hit all the vertices in the minimizing S, so our formulation of Tournier’s

lemma in terms of vertices only is enough to see that there is no single loop the walk is

expected to traverse infinitely many times before straying from it. The next example also

presents a calculation of κ0 for a situation where it is less straightforward than the others

we’ve examined.

Example B.0.8. L = 16, R = 5, α−16, α2, α5 > 0, all other αi = 0.

In this case, there are four possible values for κ0, three of which can be attained by sets of

vertices representing single loops, but one of which cannot. We will show that κ0 is attained

by one of the following four sets:

• S1 = {0, 2, 4, 6, 8, 10, 12, 14, 16}. This set represents a loop that steps up by 2s from 0

to 16 and then jumps back to 0. βS1 = 8α−16 + α2 + 9α5.

• S2 = {0, 5, 10, 15, 16, 20, 25, 30, 32}. The set S2 represents a loop that steps up by

5s from 0 to 30, then steps to 32 and jumps back to 16 and then to 0. This is one

of 28 loops that all step up by 5 six times, up by 2 once, and down by 16 twice,

having vertex set S with leftmost point 0. All such loops have the same associated

βS = βS2 = 7α−16 + 8α2 + 3α5.

• S3 = {0, 5, 10, 12, 14, 16}. The set S3 represents a loop that steps up by 5s from 0 to

10, then by 2s from 0 to 16, then jumps back to 0. This is one of 10 loops that all have

vertex set S ⊂ [0, 16], all of which have βS = βS3 = 5α−16 + 3α2 + 4α5.

• S4 = {0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16}. This set does not represent one single loop;

in fact, it represents all 10 loops that stay within [0, 16]. βS4 = 12α−16 + 2α2 + 5α5.
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One can check that any of βS1 , βS2 , βS3 , and βS4 can be the smallest, depending on the αi.

We will show

κ0 = min(βS1 , βS2 , βS3 , βS4).

To confirm that these are the possible values for κ0, let S be a finite, strongly connected

set with leftmost point 0, and we will show that βS is at least as large as one of these values.

First, we note

βS = x−16α−16 + x2α2 + x5α5,

where xi = xi(S) := #{z ∈ S : z + i /∈ S} ≥ 1. Since 0 must be reachable in one step from

a vertex to its right, 16 ∈ S.

Claim B.0.8.1. x−16 ≥ 5.

S must contain 0 and 16, so there must be a path σ from 0 to [16, ∞) that does not

leave S. Since the only step to the left is down 16, all steps in this path must be to the right

(and must therefore be of length 2 or 5). If this path includes two or more steps of length

2, then S ∩ [0, 15] must have at least 5 elements. But for each z ∈ S ∩ [0, 15], z − 16 /∈ S,

so each element of S ∩ [0, 15] contributes 1 to x−16. Hence x−16 ≥ 5. On the other hand, if

the path σ includes no steps or one step of length 2, then the path σ includes four vertices

in S ∩ [0, 15], does not include 1 or 4, and lands on either 17 or 20. Since 1 and 4 are not in

σ, either 17 or 20 contributes 1 to x−16, in which case we then have x−16 ≥ 5, or else 1 or

4 is in S, in addition to the four vertices from σ that are in [0, 15], so that |S ∩ [0, 15]| ≥ 5,

and so x−16 ≥ 5. This proves our claim.

Claim B.0.8.2. If x2 = 1, then x−16 ≥ 8 and x5 ≥ 9.

To see this, note that if x2 = 1, then S includes only even vertices; otherwise, the

rightmost odd vertex and the rightmost even vertex would each contribute 1 to x2, giving

x2 ≥ 2. Moreover, since S contains 0 and 16, it must contain every even vertex between, in

order to prevent any vertex other than the rightmost from contributing to x2. The 8 even

vertices z = 0 through z = 14 each have z − 16 /∈ S, so x−16 ≥ 8, and the 9 even vertices

z = 0 through z = 16 each have z + 5 /∈ S, so x5 ≥ 9.
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Claim B.0.8.3. x5 ≥ 3.

To see this, note that the rightmost vertex from each equivalence class (mod 5) will

contribute 1 to x5. We already have 0, 16 ∈ S, so the equivalence classes 0 and 1 are

represented. But the equivalence class 1 is only reachable from equivalence class 2 (via a

downward step of length 16) and from equivalence class 4 (via an upward step of length 2).

Hence S must contain an element from one of the equivalence classes 2 or 4 (mod 5), and

therefore at least three equivalence classes are represented, so x5 ≥ 3.

Claim B.0.8.4. If x5 = 3, then x−16 ≥ 7, and x2 ≥ 8.

We first note that since each equivalence class contributes only 1 to x5, all elements in

each equivalence class must form an unbroken arithmetic progression from the lowest to the

highest. That is, letting zleast
i and zgreatest

i be, respectively, the least and greatest z such that

z ≡ i (mod 5) and z ∈ S, we have {zleast
i , zleast

i + 5, zleast
i + 10, . . . , zgreatest

i } ⊂ S. We now

examine two separate cases.

Case 1: S contains elements from equivalence classes 0,1, and 2 (mod 5).

Since S contains no elements from equivalence class 4, equivalence zleast
1 can only be

reached from equivalence class 2, which occurs via a leftward step of length 16. Thus zleast
1 +

16 ∈ S. On the other hand, since S contains no elements from equivalence class 3, equivalence

class 2 can only be reached from equivalence class 0, via a rightward step of length 2. Thus

zleast
2 − 2 ∈ S.

Therefore, the path

0 → 5 → 10 → · · · → (zleast
2 − 2) → zleast

2 → · · · → (zleast
1 + 16) → zleast

1 → · · · → 16 → 0

is in S. All steps marked out by ellipses are upward steps of length 5. It follows that this is

a path of length 9, since any other number of steps would result in ending at a point other

than 0.

All the vertices in equivalence class 0 contribute 1 to x−16, since stepping down by 16

would reach a vertex in equivalence class 4, which cannot be in S. Vertices from the path

that are in equivalence class 2, other than zleast
1 +16, are less than zleast

1 +16, and so stepping
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down by 16 reaches a vertex that is in equivalence class 1 but not in S. And all vertices from

the path that are in equivalence class 1, other than 16, are less than 16, so stepping down

by 16 reaches a vertex not in S. Thus all but two of the vertices from the path shown will

contribute 1 to x−16, and therefore x−16 ≥ 7.

Now all the vertices in equivalence classes 1 or 2 contribute 1 to x2, since stepping to the

right by 2 reaches a vertex in equivalence class 3 or 4. And vertices in equivalence class 0

that are less than zleast
2 − 2 also contribute to x2, since stepping to the right by 2 reaches a

vertex in equivalence class 2 but less than zleast
2 . Thus, all but one of the vertices shown in

this path contribute to x2, so x2 ≥ 8.

Case 2: S contains elements from equivalence classes 0,1, and 4 (mod 5).

By a similar argument to that given in Case 1, the path

0 → 5 → 10 → · · · → (zleast
4 + 16) → zleast

4 → · · · → (zleast
1 − 2) → zleast

1 → · · · → 16 → 0

is in S. All steps marked out by ellipses are upward steps of length 5. It follows that this is

a path of length 9, since any other number of steps would result in ending at a point other

than 0. Now, for z = 0, 5, 10, zleast
4 + 11, we have z − 16 ≡ 4 (mod 5), but z − 16 < zleast

4 ,

so z − 16 /∈ S and z contributes 1 to x−16. Moreover, zleast
4 and every subsequent vertex

are all less than 16 (except, of course, for 16 itself), so they all contribute 1 to x−16. Thus,

x−16 ≥ 7.

Moreover, all vertices in equivalence class 0 or 1 contribute 1 to x2, since S has no vertices

in equivalence class 2 or 4. And all but one of the vertices z in equivalence class 4 are strictly

less than zleast
1 − 2, so that z + 2 /∈ S. Hence all but one of the vertices in the loop contribute

to x2, so x2 ≥ 8.

Claim B.0.8.5. If x2 = 2, then x5 ≥ 5.

If x2 = 2, then S contains even and odd elements (because the only even upward jumps

are of length 2, a strongly connected S with only even elements would have x2 = 1). It

therefore must contain every even number, from its least even number to its greatest even

number. In particular, it must contain S1 = [0, 16]. This is enough to include at least one

146



representative from every equivalence class (mod 5). The greatest element of S in each of

these equivalence classes contributes 1 to x5, so x5 ≥ 5.

Claim B.0.8.6. If x2 = 2, then x5 + x−16 ≥ 17 and x−16 ≥ 9.

We have already established that if x2 = 2, then S contains S1 = [0, 16] and at least

one odd number. Now S1 has x−16 = 8 and x5 = 9. The odd number will also contribute

1 to x−16, giving the bound x−16 ≥ 9. The set S1 includes 8, which is in equivalence class

3 (mod 5), and two elements of each of the equivalence classes 0,1,2, and 4. Each of the

equivalence classes must contribute at least 1 to x5, and for any of the classes 0,1,2, or

4 to avoid contributing 2, the odd number in between the two even numbers from that

equivalence class must be contained in S. This saves 1 from x5 but adds 1 to x−16, thus

keeping x5 + x−16 ≥ 17.

Claim B.0.8.7. βS ≥ min(βS1 , βS2 , βS3 , βS4).

We know βS must have x5 ≥ 3 by Claim  B.0.8.3 . By Claim  B.0.8.4 , if x5 = 3, then βS ≥

7α−16 + 8α2 + 3α5 = βS2 . Now suppose x5 ≥ 4. If x2 = 1, then βS ≥ 8α−16 + α2 + 9α5 = βS1

by Claim  B.0.8.2 . Now consider the case x2 = 2. Then x5 + x−16 ≥ 17 by Claim  B.0.8.6 . If

α5 > α−16, then since x5 ≥ 5 by Claim  B.0.8.5 , we have βS ≥ 12α−16 + 2α2 + 5α5 = βS4 .

On the other hand, if α−16 > α5, then by Claim  B.0.8.6 , βS ≥ 9α−16 + 2α2 + 8α5 >

8α−16 + α2 + 9α5 = βS1 . Now, if x2 ≥ 3, then by the assumption that x5 ≥ 4 and by Claim

 B.0.8.1 , we have βS ≥ 5α−16 + 3α2 + 4α5 = βS3 . This proves our final claim.

Now suppose the weights are α−16 = 1
67 , α2 = 15

67 , and α5 = 5
67 . We can check that κ0 =

12α−16 + 2α2 + 5α5 = 1, achieved on the set S4 = {0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16}, and

that this is strictly less than βS1 , βS2 , and βS3 . By the proof of Claim  B.0.8.6 , any set S with

x−16 = 12, x2 = 2, x5 = 5 must contain a translation of {0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16},

and a so there is no possibility that a set S which we did not consider, and which represents

a single loop, also achieves βS = 1. This means that the walk is expected to spend an

infinite amount of time in the set {0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16} before ever leaving it,

but there is no single loop that the walk is expected to take infinitely many times before

deviating from it.
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C. NOTATION

Here we collect notation that is used throughout the paper as a convenient reference.

General

• N = {1, 2, 3, . . .}. N0 = {0, 1, 2, . . .}. R≥0 = {x ∈ R : x ≥ 0}. R>0 = {x ∈ R : x > 0}.

• RWRE stands for random walk(s) in random environment(s). RWDE stands for ran-

dom walk(s) in Dirichlet environment(s).

• An environment ω on a countable vertex set V , the set ΩV of environments on V , and

the measurable space (ΩV , FV ), are defined in Section  1.3 .

• ωx = (ω(x, x + y))y∈Zd is the environment ω viewed at site x only. For a set S ⊆ Zd,

ωS = (ωx)x∈S.

• An ω with a subscript (e.g., ω1) or ω′ is usually used to denote a specific environment

when comparing multiple environments, and should not be confused with an ω with a

superscript.

• Conditions (  C1 ), ( C2 ), and ( C3 ) are defined in Section  1.3 . They say the environments

are i.i.d., almost surely irreducible, and almost surely have bounded jumps. Condition

( C4 ) is defined in Section  2.3.1 for environments on Z. It says the walk is almost surely

transient to the right.

• A walk on the vertex set Zd is a function from the set N0 of non-negative integers to

the set Zd, denoted X = (Xn)∞
n=0 ∈ (Zd)N0 .

• v := limn→∞
Xn

n
is the P0 almost-sure limiting velocity that necessarily exists for all

RWRE studied in this thesis.

• A walk is transient to the right if limn→∞ Xn = ∞, almost surely under the annealed

measure.

• A walk is ballistic if v > 0.

148



• ∆I := {(xi)i∈I : ∑i∈I xi = 1} is the simplex of a finite set I.

• θx is the left shift operator on environments ω, defined by θxω(a, b) = ω(x + a, x + b).

• We use interval notation to denote sets of consecutive integers in the state space Z,

rather than subsets of R. For example, [1, ∞) denotes the set of integers to the right

of 0. However, we make one exception, using [0, 1] to denote the set of all real numbers

from 0 to 1.

• Sd−1 is the unit sphere in Rd.

• Sd−1
r is the set of ` ∈ Sd−1 that have all rational slopes.

• The annealed probability of γ for a path γ = (x0, x1, . . . , xn), is Px0(X0 = x0, X1 =

x1, . . . , Xn = xn).

• A possible path is a path that has positive annealed probability.

Graphs

• A weighted directed graph H = (V, E, W ) is a vertex set V with an edge set E ⊆ V ×V ,

and a weight function w : E → R>0.

• If e = (x, y) ∈ E, we say that e is an edge from x to y, and we say the head of e is

e = y and the tail of e is e = x.

• DERRW stands for directed edge reinforced random walk. For its definition and con-

nection to RWDE, see page  18 .

• For a vertex x ∈ V , the divergence of x in H is div(x) = ∑
e=x w(e) − ∑

e=x w(e). If

the divergence is zero for all x, we say the graph H has zero divergence.

• A set S ⊂ V is strongly connected if for all x, y ∈ S, there is a path from x to y in H

using only vertices in S.

• For a set S ⊆ V , βS is the sum of the weights of all edges exiting S. See (  1.5 ).
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• N ⊂ Zd is a set of allowed jumps. It obeys the condition that ∑∞
n=0(N ∪ {0}) = Zd to

ensure that the irreducibility condition ( C2 ) is met.

• G is our “main graph.” It has vertex set Zd, edge set {(x, y) ∈ Zd × Zd : y − x ∈ N },

and weight function (x, y) 7→ αy−x.

• GM is defined when d = 1. It is the finite graph with vertices [0, M ] that looks like G

in the middle but is modified to have zero divergence at the endpoints. It is defined in

the proof of the transient, one-dimensional case of Theorem  2.2.1 . It can be used to

prove Lemma  4.2.3 .

• G+ is defined when d = 1. It is the half-infinite graph with vertex set [0, ∞). It looks

like G except near 0, where it looks like GM . It can be thought of as a limit of GM as

M → ∞. It is defined at the beginning of Section  4.2.2 . Its crucial property is given

by Lemma  4.2.3 , which is used in the proofs of Proposition  4.2.4 , Proposition  4.2.5 ,

and Theorem  2.3.5 .

Parameters

• L and R are positive integers. The parameter L represents the maximum length of a

jump to the left that has positive probability, and R represents the maximum length

of a jump to the right.

• (αi)R
i=−L are Dirichlet parameters for random transition probability vectors. It is as-

sumed that α−L and αR are positive.

• d+ = ∑R
i=1 iαi, and d− = ∑−1

i=−L |i|αi.

• c+ = ∑R
i=1 αi, and c− = ∑−1

i=−L αi.

• κ1 = d+ − d− = ∑R
i=−L iαi.

• κ0 = inf{βS : S ⊂ Z finite, strongly connected} is the minimum weight exiting a finite,

strongly connected subset of G.
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• m0 is an integer large enough that every interval of length m0 is strongly connected in

G, and also large enough that m0 ≥ max(L, R).

Probability measures

• For a given environment ω on a vertex set V and a site x ∈ V , P x
ω is the quenched

probability measure on the set V N0 where P 0
ω(X0 = x) = 1, and for y ∈ V , P x

ω (Xn+1 =

y|X0, . . . , Xn) = ω(Xn, y).

• P is a general probability measure on ΩV .

• For x ∈ V , Px = P × P x
ω is the measure on ΩV × V N0 generated by Px(A × B) =∫

A P x
ω (B)P (dω). We abuse notation by also using Px to refer to the marginal measure

Px(ΩV × ·) on V N0 , which we call the annealed measure.

• For a given weighted directed graph H = (V, E, W ), PH is the Dirichlet law on en-

vironments corresponding to H; that is, the measure on ΩV under which transition

probabilities at the various vertices x ∈ V are independent, and for each vertex

x ∈ V , (ω(x, e))e=x is distributed according to a Dirichlet distribution with param-

eters (w(e))e=x. (Or, if V ⊂ Z, we let PH be any measure on ΩZ whose marginals on

ΩV are as described.)

• PG is the main measure on ΩZ that we study in this paper. That is, PG is the Dirichlet

measure on environments corresponding to G, so that for each x, the transition proba-

bility vector (ω(x, y))y∈N is distributed as a Dirichlet random vector with parameters

(αy)y∈N .

Functions of a walk

For all of the functions below, we often suppress the argument of the function as is

traditional with random variables. Sometimes, however, we leave the argument in when it

is necessary for clarity.

• Tx(X) = inf{n ≥ 0 : Xn = x} is the first time the walk (X) hits x. We often suppress

the X.
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• T̃x(X) = inf{n > 0 : Xn = x} is the first nonzero time X hits x.

• Nx(X) = #{n ∈ N0 : Xn = x} is the total amount of time X spends at x.

• For a subset S ⊂ Z, TS(X) = minx∈S Tx(X), and NS(X) = ∑
x∈S Nx(X).

• NS
x (X) = #{0 ≤ n ≤ TSc : Xn = x} is the amount of time X spends at x before

leaving the subset S.

• Nx,y(X) = #
{
n ≥ 0 : Xn = x, sup{k < n : Xk = y} > sup{k < n : Xk = x}

}
is the

number of times the walk hits x after more recently having hit y, or the number of

“trips from y to x.”

• N ′
x,y(X) := #

{
n ∈ N0 : Xn ≤ x, sup{j < n : Xj ≥ y} > sup{j < n : Xj ≤ x}

}
is the

number of trips leftward across [x, y]. It is defined when d = 1.

• For any stopping time defined as an the first n ≥ 0 such that satisfying a certain condi-

tion, we use the same notation but with a tilde (∼) over it to denote the corresponding

positive stopping time: that is, the first n > 0 satisfying the same condition.

Cascade and bi-infinite walk

Here, assume d = 1.

• A cascade is a set of finite (continuous-time) walks, one started at each point in Z.

The walk starting at each point terminates when it reaches or passes the next multiple

of R.

• Xa = (Xa
n)∞

n=0 is the infinite walk obtained by concatenating the finite walk starting

at a with the walk starting at the point where it terminates, the walk started at the

point where that one terminates, and so on.

• X = (Xn)n∈Z is the bi-infinite walk obtained by this process.

• Nx, T x, Nx,y, and so on are defined analogously to Nx, Tx, Nx,y, and so on, but with

n ≥ 0 replaced with n ∈ Z.
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• For a given environment ω, Pω is the measure on the space of discrete-time cascades

induced by ω, where the law of each Xa under Pω is the law of X under P a
ω .

• P = P × Pω is the annealed measure on the space of environments and cascades.

Accelerated walks

• A continuous-time walk on Zd is a function from the set R≥0 of non-negative reals to

Zd, denoted X = (Xt)t≥0.

• A discrete-time walk may be thought of as a continuous-time walk where the position

changes at integer times.

• A Bouchet acceleration function on Zd, defined on page  41 , is a measurable function

A from the space ΩZd of environments on Zd to the space of distributions of positive

random variables, where A(ω) only depends on ω[−M,M ] for some positive integer M .

• P x
ω,A is the law of a continuous-time Markov chain started at x. Whenever the process

hits a point a ∈ Z, it remains there for an amount of time distributed according to

A(θaω) and independent of all other information about the history of the process before

jumping to a point chosen according to ω.

• Px
A or Px

G,A is the corresponding annealed law.

• v(A) = limn→∞
Xt

t
is the P0

A almost-sure limiting velocity that necessarily exists for

all directionally transient RWRE on Z.

• A measure P on ΩZd has essential slowing if, for any Bouchet acceleration function A,

it is the case that v(A) = 0.
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